留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多激光传感器装配的自由曲面法线找正方法研究

张赢 丁红昌 赵长福 周义根 曹国华

张赢, 丁红昌, 赵长福, 周义根, 曹国华. 基于多激光传感器装配的自由曲面法线找正方法研究[J]. 中国光学(中英文), 2021, 14(2): 344-352. doi: 10.37188/CO.2020-0205
引用本文: 张赢, 丁红昌, 赵长福, 周义根, 曹国华. 基于多激光传感器装配的自由曲面法线找正方法研究[J]. 中国光学(中英文), 2021, 14(2): 344-352. doi: 10.37188/CO.2020-0205
ZHANG Ying, DING Hong-chang, ZHAO Chang-fu, ZHOU Yi-gen, CAO Guo-hua. The normal alignment method for freeform surfaces based on multiple laser sensor assembly[J]. Chinese Optics, 2021, 14(2): 344-352. doi: 10.37188/CO.2020-0205
Citation: ZHANG Ying, DING Hong-chang, ZHAO Chang-fu, ZHOU Yi-gen, CAO Guo-hua. The normal alignment method for freeform surfaces based on multiple laser sensor assembly[J]. Chinese Optics, 2021, 14(2): 344-352. doi: 10.37188/CO.2020-0205

基于多激光传感器装配的自由曲面法线找正方法研究

doi: 10.37188/CO.2020-0205
基金项目: 国家重点研发计划重大科学仪器开发项目(No. 2017YFF0105304);吉林省省级产业创新专项资金项目(No. 2018C038-4);吉林省科技研发计划项目(No. 20200401117GX)
详细信息
    作者简介:

    张 赢(1984—),男,吉林长春人,博士研究生,2007年于长春理工大学获得学士学位;2010年于陕西科技大学获得硕士学位。主要从事光学在线检测技术、机器视觉等相关研究。E-mail:zhangying1984@aliyun.com

    丁红昌(1980—),男,辽宁抚顺人,博士,副教授,博士生导师,2006年、2009年和2016年于长春理工大学分别获得学士、硕士和博士学位。主要从事光学在线检测技术等相关研究。E-mail:dinghc@cust.edu.cn

    曹国华(1965—),男,黑龙江桦甸人,博士,教授,博士生导师,1988年于东北重型机械学院获得学士学位,1991年于长春光学精密机械学院获得硕士学位,2009年于长春理工大学获得博士学位,现为长春理工大学机电工程学院教授,主要从事光学在线检测技术、机器视觉等相关研究。E-mail:caogh@cust.edu.cn

  • 中图分类号: TH16

The normal alignment method for freeform surfaces based on multiple laser sensor assembly

Funds: Supported by National Key Research and Development Program of Major Scientific Instruments and Equipment’s Development (No. 2017YFF0105304); Jilin Provincial Industrial Innovation Special Fund Project (No. 2018C038-4); Jilin Province Science and Technology Development Plan Project (No. 20200401117GX)
More Information
  • 摘要: 在国产化、技术自主化的大型飞机项目上,对孔位精度的标准正逐步升高,钻头的垂直度又是这一标准中最受关注的条件。机器人自动钻铆系统工作时,所产生的装配误差、磕碰、偏移等状况,不仅降低了制造及检测的准确度,还影响了整个结构件的疲劳性能。针对这一问题,提出了基于多激光传感器装配的自适应自由曲面法线检测技术,搭建了以该方法进行姿态找正的数学模型,并研究了检测装置的标定方法及流程。同时,着重讨论了在自适应方法检测时,利用电子经纬仪等装置进行误差补偿的相关技术。该方法的验证实验结果显示,多组实验数据均达到了法向精度<±0.5°的关键技术指标要求,找正后的法线平均偏差值为0.0667°。该方法能有效补偿在制孔工作中所产生的相关误差,进一步提高机器人的定位精度及法线方向检测精度。

     

  • 图 1  (a)姿态找正模型;(b)使用的激光传感器型号:FASTU/CD22;(c) X'TZ'坐标平面内角θ1h1h2之间的关系

    Figure 1.  (a) Geometric model for posture alignment; (b) type of laser sensor used: FASTU/CD22; (c) relationships between θ1, h and h2 in the X'TZ' coordinate plane.

    图 2  法向标定实验所用的设备。(a)激光传感器安装示意图;(b)标定块

    Figure 2.  Equipments used in normal-direction alignment experiments. (a) Schematic diagram of the laser sensor assembly; (b) calibration blocks

    图 3  法线检测验证平台。(a)验证平台装置图;(b)实验场景图

    Figure 3.  Verification platform for detection in the normal-direction. (a) Experimental devices; (b) experimental scene

    图 4  法线找正实验设备

    Figure 4.  Experiment setup of normal-directions alignment

    图 5  转动角度为1°/次时,计算出的法线偏转角度和经纬仪测量出的偏转角度值分析

    Figure 5.  Data analysis of the Angle_cal calculated and the Angle_act measured by theodolite (rotation angle is 1°/time)

    图 6  法线检测偏差值与0.5°线进行比较

    Figure 6.  Comparison of the normal deviation data with 0.5° target deviation

    表  1  转动角度为1°/次时法线找正实验验证数据

    Table  1.   Verification data of normal-direction alignment with rotation angle of 1°/time

    实验编号传感器实时测量值/(mm)计算的法线
    变化量/(°)
    经纬仪测量的法线
    变化量/(°)
    误差标定结果
    /(°)
    h1h2h3h4
    n1_141.6431.1740.0527.17\\\
    n1_241.8130.9740.1026.800.53050.68630.1558
    n1_342.2038.9940.3826.590.72950.78090.0514
    n1_442.6031.0440.7326.480.76020.79870.0386
    n1_543.0331.0941.0326.280.78130.82690.0456
    n1_643.0131.0940.9926.300.78690.81130.0244
    n1_743.4531.1541.3226.160.85730.82220.0351
    n1_844.0531.4041.6726.050.77080.78890.0181
    n1_944.4531.5142.0625.940.78190.77720.0047
    n1_1044.9631.7042.4125.900.95390.90910.0449
    n1_1145.6332.0642.8825.940.81280.69160.1212
    下载: 导出CSV

    表  2  验证实验后所统计的法线偏差值(abs_err)数据

    Table  2.   Statistical data of normal deviation value (abs_err) in validated experiments

    实验编号2°_abs_err1°_abs_err0.1°_abs_err0.2°_abs_err
    n_20.25940.15580.02410.0025
    n_30.03140.05140.05220.0433
    n_40.02220.03860.09950.0175
    n_50.08580.04560.15920.0723
    n_60.32570.02440.02290.0136
    n_70.17470.03510.00260.0810
    n_8/0.01810.05990.0191
    n_9/0.00470.01910.0315
    n_10/0.04490.00790.0937
    n_11/0.12120.10410.0379
    下载: 导出CSV
  • [1] 喻龙, 章易镰, 王宇晗, 等. 飞机自动钻铆技术研究现状及其关键技术[J]. 航空制造技术,2017(9):16-25.

    YU L, ZHANG Y L, WANG Y H, et al. Research status of aircraft automatic drilling and riveting system and its key technology[J]. Aeronautical Manufacturing Technology, 2017(9): 16-25. (in Chinese)
    [2] 陈文亮, 王慧, 王珉, 等. 具有冗余自由度的混联自动钻铆机运动学分析[J]. 华南理工大学学报(自然科学版),2019,47(10):51-59.

    CHEN W L, WANG H, WANG M, et al. Kinematic analysis of hybrid automatic drilling and riveting machine with redundant degree of freedom[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(10): 51-59. (in Chinese)
    [3] SONG T, XI F F, GUO SH, et al. A comparison study of algorithms for surface normal determination based on point cloud data[J]. Precision Engineering, 2015, 39: 47-55. doi: 10.1016/j.precisioneng.2014.07.005
    [4] LEI CH Y, BI Y B, LI J X, et al. Slug rivet assembly modeling and effects of procedure parameters on the quality of riveted lap joints[J]. Advances in Mechanical Engineering, 2018, 10(9): 1-12.
    [5] 陈允全. 自动钻铆机托架变形分析及处理方法研究[D]. 西安: 西北工业大学, 2007.

    CHEN Y Q. Research on the analysis of bracket deformation and its handling method[D]. Xi’an: Northwestern Polytechnical University, 2007. (in Chinese)
    [6] 董一巍, 卜昆, 陈允全, 等. 基于VC的自动钻铆机铆接数据库系统的开发[J]. 科学技术与工程,2007,7(16):4088-4093. doi: 10.3969/j.issn.1671-1815.2007.16.027

    DONG Y W, BU K, CHEN Y Q, et al. Development of automatic rivet gun’s riveting database system based on VC6.0[J]. Science Technology and Engineering, 2007, 7(16): 4088-4093. (in Chinese) doi: 10.3969/j.issn.1671-1815.2007.16.027
    [7] 胡小平, 许瑛, 郑文峰, 等. 飞机自动装配机器人设计及仿真[J]. 制造业信息化,2009(1):69-70.

    HU X P, XU Y, ZHENG W F, et al. Design and dynamic analysis of automatic aircraft assembly robot[J]. Mechanical Engineer, 2009(1): 69-70. (in Chinese)
    [8] 李菡. 基于双机器人协同的自动钻铆终端器及其自动供钉装置的设计与研究[D]. 杭州: 浙江大学, 2010.

    LI H. Study on dual-robot-based drilling & riveting end-effector and automated rivet feeding apparatus[D]. Hangzhou: Zhejiang University, 2010. (in Chinese)
    [9] 张杨, 高明辉, 周万勇, 等. 自动钻铆系统中工业机器人协同控制技术研究[J]. 航空制造技术,2013(20):87-90, 94. doi: 10.3969/j.issn.1671-833X.2013.20.016

    ZHANG Y, GAO M H, ZHOU W Y, et al. Research on industrial robot cooperative control technology for automatic drilling and riveting system[J]. Aeronautical Manufacturing Technology, 2013(20): 87-90, 94. (in Chinese) doi: 10.3969/j.issn.1671-833X.2013.20.016
    [10] 凌扬洋, 李西宁, 李卫平, 等. 适应自动钻铆的壁板预装配柔性定位装置设计[J]. 机械科学与技术,2014,33(3):465-468.

    LING Y Y, LI X N, LI W P, et al. Designing flexible positioning device for aircraft’s pre-assembled panel to accommodate automatic drilling and riveting[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(3): 465-468. (in Chinese)
    [11] 公茂震, 袁培江, 王田苗, 等. 航空制孔机器人末端垂直度智能调节方法[J]. 北京航空航天大学学报,2012,38(10):1400-1404.

    GONG M Z, YUAN P J, WANG T M, et al. Intelligent verticality-adjustment method of end-effector in aeronautical drilling robot[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(10): 1400-1404. (in Chinese)
    [12] 战强, 陈祥臻. 机器人钻铆系统研究与应用现状[J]. 航空制造技术,2018,61(4):24-30.

    ZHAN Q, CHEN X ZH. Research status of robot drilling and riveting system and its applications[J]. Aeronautical Manufacturing Technology, 2018, 61(4): 24-30. (in Chinese)
    [13] 杜宝瑞, 冯子明, 姚艳彬, 等. 用于飞机部件自动制孔的机器人制孔系统[J]. 航空制造技术,2010(2):47-50. doi: 10.3969/j.issn.1671-833X.2010.02.007

    DU B R, FENG Z M, YAO Y B, et al. Robot drilling system for automatic drilling of aircraft[J]. Aeronautical Manufacturing Technology, 2010(2): 47-50. (in Chinese) doi: 10.3969/j.issn.1671-833X.2010.02.007
    [14] JAYAWEERA N, WEBB P. Adaptive robotic assembly of compliant aero-structure components[J]. Robotics and Computer-Integrated Manufacturing, 2007, 23(2): 180-194. doi: 10.1016/j.rcim.2006.04.002
    [15] XI F F, YU L, TU X W. Framework on robotic percussive riveting for aircraft assembly automation[J]. Advances in Manufacturing, 2013, 1(2): 112-122. doi: 10.1007/s40436-013-0014-5
    [16] FROMMKNECHT A, KUEHNLE J, EFFENBERGER I, et al. Multi-sensor measurement system for robotic drilling[J]. Robotics and Computer-Integrated Manufacturing, 2017, 47: 4-10. doi: 10.1016/j.rcim.2017.01.002
    [17] EGUTI C C A, TRABASSO L G, VILLANI E, et al. Development of a robotic end-effector of drilling and fasteners inserter for aircraft structures[C]. Proceedings of SAE 2012 Aerospace Manufacturing and Automated Fastening Conference & Exhibition, SAE, 2012: 1858.
    [18] 李震宇, 田威, 廖文和. 用于复材自动钻铆末端执行器的设计及应用[J]. 机电一体化,2016,22(5):54-58, 63.

    LI ZH Y, TIAN W, LIAO W H. Design and application of automatic drilling and riveting end executor using in composite materials processing[J]. Mechatronics, 2016, 22(5): 54-58, 63. (in Chinese)
    [19] 秦远, 曹国华, 丁红昌, 等. 白车身抗凹性能仿真实验研究[J]. 新型工业化,2019,9(3):32-36, 49.

    QIN Y, CAO G H, DING H CH, et al. Experimental study on anti-concave performance of white body[J]. The Journal of New Industrialization, 2019, 9(3): 32-36, 49. (in Chinese)
    [20] 吴朋. 轻型自主移动机器人制孔系统任务规划与自适应控制技术[D]. 南京: 南京航空航天大学, 2017.

    WU P. Task planning and adaptive control technology for lightweight autonomous mobile robot drilling system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017. (in Chinese)
    [21] 周卫雪. 面向飞机装配的机器人运动轨迹和姿态离线规划与在线调整方法研究[D]. 南京: 南京航空航天大学, 2012.

    ZHOU W X. Research on robotic route and posture off-line planning and on-line calibrating method for aircraft assembly[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012. (in Chinese)
    [22] 孟繁擘. 基于视觉的立方镜瞄准技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    MENG F B. Research on reflector collimation technology based on robot vision[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese)
    [23] VLIEG R. Robotic trailing edge flap drilling system[C]. Proceedings of Aerospace Technology Conference and Exposition, SAE, 2009: 3244.
    [24] 王珉, 陈文亮, 郝鹏飞, 等. 飞机数字化自动钻铆系统及其关键技术[J]. 航空制造技术,2013(1-2):80-83.

    WANG M, CHEN W L, HAO P F, et al. Aircraft automatic drilling and riveting system and its key technology[J]. Aeronautical Manufacturing Technology, 2013(1-2): 80-83. (in Chinese)
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  1197
  • HTML全文浏览量:  361
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-23
  • 修回日期:  2020-12-31
  • 网络出版日期:  2021-03-05
  • 刊出日期:  2021-03-23

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!