留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多波长拉曼激光对CCD损伤实验研究

刘金生 刘金波 李晓文

刘金生, 刘金波, 李晓文. 多波长拉曼激光对CCD损伤实验研究[J]. 中国光学(中英文). doi: 10.37188/CO.2021-0228
引用本文: 刘金生, 刘金波, 李晓文. 多波长拉曼激光对CCD损伤实验研究[J]. 中国光学(中英文). doi: 10.37188/CO.2021-0228
LIU Jin-sheng, LIU Jin-bo, LI Xiao-wen. Experimental study on CCD damage by Multi-wavelength raman lasers[J]. Chinese Optics. doi: 10.37188/CO.2021-0228
Citation: LIU Jin-sheng, LIU Jin-bo, LI Xiao-wen. Experimental study on CCD damage by Multi-wavelength raman lasers[J]. Chinese Optics. doi: 10.37188/CO.2021-0228

多波长拉曼激光对CCD损伤实验研究

doi: 10.37188/CO.2021-0228
详细信息
    作者简介:

    刘金生(1980—),男,江苏盐城人,2009年于哈尔滨工业大学获得博士学位,高级工程师,长期从事光电领域技术研究。Email:lasercosmos@163.com

    刘金波(1981—),男,河南郑州人,2010年于哈尔滨工业大学获得博士学位,副研究员,硕士导师,主要从事受激拉曼激光、受激拉曼光谱技术研究。Email:hitliujinbo@163.com

    李晓文(1987—),女,山东临沂人,博士,工程师,主要从事固体激光器方面的研究。Email:lixiaowen0918@126.com

  • 中图分类号: TN249

Experimental study on CCD damage by Multi-wavelength raman lasers

More Information
  • 摘要: 开展了多波长纳秒脉冲拉曼激光对行间转移CCD相机的损伤实验研究。分别研究了496 nm、574 nm、630 nm单波长拉曼激光与混合输出的多波长拉曼激光对CCD的点损伤、线损伤和面损伤情况,测量了不同波长拉曼激光的损伤阈值区间,并根据损伤情况统计拟合,获得了不同波长拉曼激光能量与损伤概率的关系曲线。实验结果表明:混合波长拉曼激光对CCD的损伤阈值低于单波长拉曼激光损伤阈值,不同波长拉曼激光对于CCD的损伤阈值也存在区别,其中630 nm拉曼激光的损伤阈值低于496 nm激光,574 nm激光的损伤阈值介于496 nm和630 nm拉曼激光之间。通过分析CCD不同损伤情况的显微图像,以及受损伤CCD的电子学特性,对拉曼激光损伤CCD的机理进行了探讨。

     

  • 图 1  受激拉曼散射激光光源示意图

    Figure 1.  Schematic diagram of the experimental setup of multiple Raman lasers in a single Raman cell, L1-L2: lens, DM: Dichroic mirror. PBS: polarized beam splitter, Prism: Pellin-Broca prism

    图 2  多波长拉曼激光损伤CCD实验装置

    Figure 2.  experimental setup of multi-wavelength Raman lasers damage CCD.DM: Dichroic mirror. BS: beam splitter. DAC: data acquisition card

    图 3  多波长拉曼激光光谱图

    Figure 3.  The spectrum of the multi-wavelength Raman laser used in this paper

    图 4  不同波长拉曼激光在CCD上的聚焦图像

    Figure 4.  The focused spots of each Raman laser on the CCD

    图 5  CCD损伤情况下输出的图像。(a)点损伤情况下CCD的输出图像;(b)出现线损伤情况下CCD的输出图像;(c) 面损伤情况下CCD的输出图像

    Figure 5.  The images of the damaged CCD of different severities. (a) dot damage; (b) line damage; (c) total damage.

    图 6  496 nm拉曼激光照射CCD形成损伤类型及统计分析。(a)点损伤;(b)线损伤;(c)面损伤

    Figure 6.  The damage type and possibility of the CCD focused by the 496 nm Raman laser at different energy densities. (a) dot damage; (b) line damage; (c) total damage

    图 7  574 nm拉曼激光照射CCD形成损伤类型及统计分析。(a)点损伤;(b)线损伤;(c)面损伤

    Figure 7.  The damage type and possibility of the CCD focused by the 574 nm Raman laser at different energy densities. (a) dot damage; (b) line damage; (c) total damage

    图 8  630 nm拉曼激光照射CCD形成损伤类型及统计分析。(a)点损伤;(b)线损伤;(c)面损伤

    Figure 8.  The damage type and possibility of the CCD focused by a 630 nm Raman laser at different energy densities. (a) dot damage; (b) line damage; (c) total damage

    图 9  多波长混合激光照射CCD形成损伤类型及统计分析。(a)点损伤;(b)线损伤;(c)面损伤

    Figure 9.  The damage type and possibility of the CCD focused by a mixture laser at different energy densities. (a) dot damage; (b) line damage; (c) total damage

    图 10  496 nm拉曼激光损伤CCD显微图。其中(a)点损伤;(b)线损伤;(c)面损伤

    Figure 10.  The micrograph of the CCD damaged by a 496 nm Raman laser at different severities. (a) dot damage; (b) line damage; (c) total damage

    图 11  574 nm拉曼激光损伤CCD显微图。其中(a)点损伤;(b)线损伤;(c)面损伤

    Figure 11.  The micrograph of the CCD damaged by a 574 nm Raman laser at different severities. (a) dot damage; (b) line damage; (c) total damage

    图 12  630 nm拉曼激光损伤CCD显微图;其中(a)点损伤,(b)线损伤;(c)面损伤

    Figure 12.  The micrograph of the CCD damaged by a 630 nm Raman laser at different severities. (a) dot damage; (b) line damage; (c) total damage

    图 13  混合波长拉曼激光损伤CCD显微图;其中(a)点损伤;(b)线损伤;(c)面损伤

    Figure 13.  The micrograph of the CCD damaged by a mixture laser at different severities. (a) dot damage; (b) line damage; (c) total damage

    表  1  拉曼池输出的混合激光谱线的能量分布

    Table  1.   Energy distribution of the mixture laser from a Raman cell

    激光波长496 nm532 nm574 nm630 nm其他混合激光
    脉冲能量2.8 μJ64.5 μJ8.3 μJ11.5 μJ0.9 μJ88 μJ
    能量占比3.2%73.3%9.4%13.1%1.1%100%
    聚焦光斑
    面积
    1.07×
    10−4 cm2
    7.13×
    10−5 cm2
    1.09×
    10−4 cm2
    2.73×
    10−4 cm2
    下载: 导出CSV

    表  2  不同波长激光辐照下CCD的点损伤阈值,线损伤阈值和面损伤阈值拟合结果

    Table  2.   Fitting damage threshold of dot, line and total damage by different wavelength lasers

    损伤种类\拉曼激光波长496 nm574nm630 nm混合波长
    点损伤阈值(mJ/cm28.66±0.139.57±0.854.48±0.132.46±0.02
    线损伤阈值(mJ/cm286.8±2.038.85±0.279.23±0.448.53±0.18
    面损伤阈值(mJ/cm2308.6±18.5113.1±3.533.8±0.235.0±0.0
    下载: 导出CSV
  • [1] BECKER M F, ZHANG CH ZH, WATKINS S E, et al. Laser-induced damage to silicon CCD imaging sensors[J]. Processing of SPIE, 1989, 1105: 68-77. doi: 10.1117/12.960613
    [2] BECKER M F, ZHANG CH ZH, BLARRE L, et al. Laser-induced functional damage to silicon CCD sensor arrays[J]. Processing of SPIE, 1992, 1624: 67-79. doi: 10.1117/12.60092
    [3] ZHANG CH ZH, WATKINS S E, WALSER F M, et al. Laser-induced damage to silicon charged-coupled imaging devices[J]. Optical Engineering, 1991, 30(5): 651-657. doi: 10.1117/1.2221305
    [4] 郝向南, 李化, 聂劲松, 等. 不同工作状态激光对可见光CCD的损伤实验[J]. 光电工程,2012,39(9):113-118.

    HAO X N, LI H, NIE J S, et al. Experiment of visible CCD damaged by laser operating in different state[J]. Opto-Electronic Engineering, 2012, 39(9): 113-118. (in Chinese)
    [5] 朱志武, 张震, 程湘爱, 等. 单脉冲激光对CCD探测器的硬损伤及损伤概率[J]. 红外与激光工程,2013,42(1):113-118. doi: 10.3969/j.issn.1007-2276.2013.01.021

    ZHU ZH W, ZHANG ZH, CHENG X A, et al. Damage phenomenon and probability of CCD detectors under single-laser-pulse irradiation[J]. Infrared and Laser Engineering, 2013, 42(1): 113-118. (in Chinese) doi: 10.3969/j.issn.1007-2276.2013.01.021
    [6] 王明, 王挺峰, 邵俊峰. 面阵CCD相机的飞秒激光损伤分析[J]. 中国光学,2013,6(1):96-102.

    WANG M, WANG T F, SHAO J F, et al. Analysis of femtosecond laser induced damage to array CCD camera[J]. Chinese Optics, 2013, 6(1): 96-102. (in Chinese)
    [7] 邵俊峰, 刘阳, 王挺峰, 等. 皮秒激光对电荷耦合器件多脉冲损伤效应研究[J]. 兵工学报,2014,35(9):1408-1413. doi: 10.3969/j.issn.1000-1093.2014.09.012

    SHAO J F, LIU Y, WANG T F, et al. Damage effect of charged coupled device with multiple-pulse picosecond laser[J]. Acta Armamentarii, 2014, 35(9): 1408-1413. (in Chinese) doi: 10.3969/j.issn.1000-1093.2014.09.012
    [8] 蔡跃, 叶锡生, 马志亮, 等. 170 ps激光脉冲辐照可见光面阵Si-CCD的实验[J]. 光学 精密工程,2011,19(2):457-462. doi: 10.3788/OPE.20111902.0457

    CAI Y, YE X S, MA ZH L, et al. Experiment of 170 ps laser pulse irradiation effect on visible plane array Si-CCD[J]. Optics and Precision Engineering, 2011, 19(2): 457-462. (in Chinese) doi: 10.3788/OPE.20111902.0457
    [9] 赵洋, 金光勇, 李明欣, 等. 毫秒脉冲激光损伤CCD探测器的实验研究[J]. 激光技术,2017,41(5):632-636. doi: 10.7510/jgjs.issn.1001-3806.2017.05.003

    ZHAO Y, JIN G Y, LI M X, et al. Experimental study about CCD detectors damaged by millisecond pulsed laser[J]. Laser Technology, 2017, 41(5): 632-636. (in Chinese) doi: 10.7510/jgjs.issn.1001-3806.2017.05.003
    [10] 张鑫, 牛春晖, 马牧燕, 等. 三波长单脉冲纳秒激光损伤CCD实验研究[J]. 应用激光,2020,40(2):300-307.

    ZHANG X, NIU CH H, MA M Y, et al. Experimental study on three-wavelength single-pulse nanosecond laser damage CCD[J]. Applied Laser, 2020, 40(2): 300-307. (in Chinese)
    [11] 王金宝. 激光辐照可见光面阵Si-CCD探测器实验研究[D]. 长沙: 国防科学技术大学, 2003.

    WANG J B. Experimental investigation of the visible light arrays of Si-CCD irradiated by the laser[D]. Changsha: National University of Defense Technology, 2003. (in Chinese)
    [12] 刘泽金, 陆启生, 蒋志平, 等. 面阵CCD图像传感器点破坏机理研究[J]. 应用激光,1995,15(2):85-86.

    LIU Z J, LU Q SH, JIANG ZH P, et al. Research on damaging mechanism of CCD video camera irradiated by a focusing laser beam[J]. Applied Laser, 1995, 15(2): 85-86. (in Chinese)
    [13] 周旋风, 张德锋, 王彦斌, 等. 激光辐照行间转移型CCD的串扰效应[J]. 光学 精密工程,2021,29(6):1225-1233. doi: 10.37188/OPE.20212906.1225

    ZHOU X F, ZHANG D F, WANG Y B, et al. Crosstalk effects of IT-CCD irradiated by laser[J]. Optics and Precision Engineering, 2021, 29(6): 1225-1233. (in Chinese) doi: 10.37188/OPE.20212906.1225
    [14] 姜玉刚, 刘华松, 王利栓, 等. 卫星激光防护薄膜窗口的设计与制备技术研究[J]. 中国光学,2019,12(4):804-809. doi: 10.3788/co.20191204.0804

    JIANG Y G, LIU H S, WANG L SH, et al. Design and preparation technology of laser protective film window of satellite[J]. Chinese Optics, 2019, 12(4): 804-809. (in Chinese) doi: 10.3788/co.20191204.0804
    [15] 周晟, 王凯旋, 刘定权, 等. 3.2~3.8 μm和4.9~5.4 μm红外双色滤光片的研制[J]. 中国光学,2021,14(3):536-543. doi: 10.37188/CO.2020-0206

    ZHOU SH, WANG K X, LIU D Q, et al. Research on infrared dual-color filters with 3.2~3.8 μm and 4.9~5.4 μm bands[J]. Chinese Optics, 2021, 14(3): 536-543. (in Chinese) doi: 10.37188/CO.2020-0206
    [16] 陈柄言, 于永吉, 吴春婷, 等. 窄线宽1064 nm光纤激光泵浦高效率中红外3.8 μm MgO: PPLN光参量振荡器[J]. 中国光学,2021,14(2):361-367. doi: 10.37188/CO.2020-0169

    CHEN B Y, YU Y J, WU CH T, et al. High efficiency mid-infrared 3.8 μm MgO: PPLN optical parametric oscillator pumped by narrow linewidth 1064 nm fiber laser[J]. Chinese Optics, 2021, 14(2): 361-367. (in Chinese) doi: 10.37188/CO.2020-0169
    [17] 徐飞, 潘其坤, 陈飞, 等. 中红外Fe2+: ZnSe激光器研究进展[J]. 中国光学,2021,14(3):458-469. doi: 10.37188/CO.2020-0180

    XU F, PAN Q K, CHEN F, et al. Development progress of Fe2+: ZnSe lasers[J]. Chinese Optics, 2021, 14(3): 458-469. (in Chinese) doi: 10.37188/CO.2020-0180
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  98
  • HTML全文浏览量:  48
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-05-16

目录

    /

    返回文章
    返回