留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辐射耦合效应对目标红外偏振特性的影响

宿德志 刘亮 吴世永 张纪磊 王坤 刘陵顺

宿德志, 刘亮, 吴世永, 张纪磊, 王坤, 刘陵顺. 辐射耦合效应对目标红外偏振特性的影响[J]. 中国光学(中英文), 2023, 16(2): 318-328. doi: 10.37188/CO.2022-0035
引用本文: 宿德志, 刘亮, 吴世永, 张纪磊, 王坤, 刘陵顺. 辐射耦合效应对目标红外偏振特性的影响[J]. 中国光学(中英文), 2023, 16(2): 318-328. doi: 10.37188/CO.2022-0035
SU De-zhi, LIU Liang, WU Shi-yong, ZHANG Ji-lei, WANG Kun, LIU Ling-shun. Influence of radiation coupling effect on polarization characteristics of targets[J]. Chinese Optics, 2023, 16(2): 318-328. doi: 10.37188/CO.2022-0035
Citation: SU De-zhi, LIU Liang, WU Shi-yong, ZHANG Ji-lei, WANG Kun, LIU Ling-shun. Influence of radiation coupling effect on polarization characteristics of targets[J]. Chinese Optics, 2023, 16(2): 318-328. doi: 10.37188/CO.2022-0035

辐射耦合效应对目标红外偏振特性的影响

基金项目: 国家自然科学基金青年基金(No. 61205206)
详细信息
    作者简介:

    宿德志(1986—),男,内蒙古扎赉特旗人,硕士,副教授,2010年于国防科学技术大学获得硕士学位,主要从事红外偏振成像、红外偏振特性等方面的研究。E-mail:sudezhifun@163.com

    刘 亮(1981—),男,湖北黄石人,博士,讲师,2010年于国防科学技术大学获得博士学位,主要从事高能激光技术、光电对抗技术研究。E-mail:liul513@126.com

  • 中图分类号: TP72

Influence of radiation coupling effect on polarization characteristics of targets

Funds: Supported by National Natural Science Funds of China (No. 61205206)
More Information
  • 摘要:

    红外偏振成像技术具有探测距离远,目标识别率高等多种优势,但在复杂环境下目标偏振特性易受背景辐射影响,使得红外偏振设备的探测能力大幅降低。本文基于偏振双向反射分布函数,综合考虑目标和背景间的辐射耦合效应,建立了目标偏振度计算模型。对比研究了有强辐射背板和无强辐射背板两种情况下目标偏振度的变化情况,并针对陆基和机载探测等小角度探测情况,仿真研究了目标和背板的温度、夹角等参数对目标偏振度的影响规律。研究结果表明:目标和背板温度相同时,辐射耦合效应会显著降低目标的偏振度,但不会改变目标偏振度随温度升高而增大的趋势。当目标和背板温度为30 °C、40 °C和50 °C时,目标偏振度的最大值分别为无强辐射背板时的63.7%、44.9%和42.2%。可见温度越高,目标和背板间的辐射耦合效应越强,目标偏振度降低的比例越大。此外,辐射耦合效应的强弱不仅与温度有关,还与目标和背板的夹角有关。随着夹角的增大,目标偏振度先增大后减小,且在夹角约为105°处取得极大值。因此,辐射耦合效应会在一定程度上改变目标偏振度,从而影响红外偏振设备的探测能力。最后,通过搭建的长波红外偏振成像系统,对建立的目标偏振度计算模型进行了实验验证,实验结果与仿真分析结果基本一致。本文研究成果对提升陆基和机载红外偏振设备的探测和识别能力具有一定的指导意义。

     

  • 图 1  红外辐射模型。${\theta _{\rm{O}}}$${\theta _{\rm{B}}}$分别为目标和背板的入射角, ${\alpha _{{\rm{O}}\_{\rm{B}}}}$为目标和背板的夹角

    Figure 1.  The model of infrared radiation. ${\theta _{\rm{O}}}$ and ${\theta _{\rm{B}}}$ are the incidence angle of the object and the background plate respectively; ${\alpha _{{\rm{O}}\_{\rm{B}}}}$ is the angle between the object and the background plate

    图 2  微面元模型几何关系

    Figure 2.  Geometric relationships of micro-surface model

    图 3  辐射耦合效应对目标偏振度的影响。(a)s, p方向的反射率;(b)目标偏振度;(c)目标的辐射偏振度和反射偏振度

    Figure 3.  Influence of RCE on the DoLP of object. (a) Reflectance of the s-polarized and p-polarized components; (b) DoLP of the object; (c) the DoLP of reflection and emission of object

    图 4  温度对目标偏振度的影响。(a)目标偏振度;(b)$ {S_0} $分量;(c)$ {S_1} $分量

    Figure 4.  Influence of temperature on the DoLP of the object. (a) DoLP of the object; (b) $ {S_0} $ component of the object; (c) $ {S_1} $ component of the object

    图 5  目标偏振度图像(从上到下,目标温度分别为30 °C、40 °C、50 °C;从左到右αO_B为87°~141°, 最右侧一列为无辐射耦合效应实验结果)

    Figure 5.  The DoLP images of the object. Up to down, the object temperatures are 30 °C, 40 °C and 50 °C. Left to right, αO_B are from 87° to 141°. The rightmost column is the DoLP images without RCE

    图 6  不同温度下的目标偏振度。(a)仿真与实验结果对比;(b)30 °C对比结果;(c)40 °C对比结果;(d)50 °C对比结果

    Figure 6.  The DoLP of the object at different temperatures. (a) Comparison between the simulation results and the experimental results; (b) comparison results at 30 °C; (c) comparison results at 40 °C; and (d) comparison results at 50 °C

  • [1] 段锦, 付强, 莫春和, 等. 国外偏振成像军事应用的研究进展(上)[J]. 红外技术,2014,36(3):190-195. doi: 10.11846/j.issn.1001_8891.201403003

    DUAN J, FU Q, MO CH H, et al. Review of polarization imaging technology for international military application I[J]. Infrared Technology, 2014, 36(3): 190-195. (in Chinese) doi: 10.11846/j.issn.1001_8891.201403003
    [2] HIOKI S, RIEDI J, DJELLALI M S. A study of polarimetric error induced by satellite motion: application to the 3MI and similar sensors[J]. Atmospheric Measurement Techniques, 2021, 14(3): 1801-1816. doi: 10.5194/amt-14-1801-2021
    [3] LI S Y, JIAO J N, WANG CH. Research on polarized multi-spectral system and fusion algorithm for remote sensing of vegetation status at night[J]. Remote Sensing, 2021, 13(17): 3510. doi: 10.3390/rs13173510
    [4] ZHOU Y, LU Y CH, SHEN Y F, et al. Polarized remote inversion of the refractive index of marine spilled oil from PARASOL images under Sunglint[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2710-2719. doi: 10.1109/TGRS.2019.2953640
    [5] 金伟其, 王霞, 曹峰梅, 等. 水下光电成像技术与装备研究进展(下)[J]. 红外技术,2011,33(3):125-132. doi: 10.3969/j.issn.1001-8891.2011.03.001

    JIN W Q, WANG X, CAO F M, et al. Review of underwater Opto-electrical imaging technology and equipment (Ⅱ)[J]. Infrared Technology, 2011, 33(3): 125-132. (in Chinese) doi: 10.3969/j.issn.1001-8891.2011.03.001
    [6] ZHANG J H, ZHANG Y, SHI ZH G. Enhancement of dim targets in a sea background based on long-wave infrared polarisation features[J]. IET Image Processing, 2018, 12(11): 2042-2050. doi: 10.1049/iet-ipr.2018.5607
    [7] 宫剑, 吕俊伟, 刘亮, 等. 红外偏振图像的舰船目标检测[J]. 光谱学与光谱分析,2020,40(2):586-594.

    GONG J, LÜ J W, LIU L, et al. Ship target detection based on infrared polarization image[J]. Spectroscopy and Spectral Analysis, 2020, 40(2): 586-594. (in Chinese)
    [8] 宫剑, 吕俊伟, 刘亮, 等. 红外偏振舰船目标自适应尺度局部对比度检测[J]. 光学 精密工程,2020,28(1):223-233. doi: 10.3788/OPE.20202801.0223

    GONG J, LÜ J W, LIU L, et al. Adaptive scale local contrast detection for infrared polarization ship targets[J]. Optics and Precision Engineering, 2020, 28(1): 223-233. (in Chinese) doi: 10.3788/OPE.20202801.0223
    [9] 张弛, 吴鑫, 谢建. 基于双向反射分布函数的海面红外偏振特性表征模型[J]. 光学 精密工程,2020,28(6):1303-1313. doi: 10.3788/OPE.20202806.1303

    ZHANG CH, WU X, XIE J. Infrared polarization characteristics on sea surface based on bidirectional reflection distribution function[J]. Optics and Precision Engineering, 2020, 28(6): 1303-1313. (in Chinese) doi: 10.3788/OPE.20202806.1303
    [10] 宿德志, 吴世永, 刘亮, 等. 基于海浪谱建模的海面偏振仿真研究[J]. 激光与光电子学进展,2021,58(14):1411001.

    SU D ZH, WU SH Y, LIU L, et al. Ocean wave spectrum modeling-based sea surface polarization simulation[J]. Laser &Optoelectronics Progress, 2021, 58(14): 1411001. (in Chinese)
    [11] GURTON K P, DAHMANI R, VIDEEN G. Measured degree of infrared polarization for a variety of thermal emitting surfaces[R]. Adelphi: Army Research Laborary, 2004: 1-19.
    [12] GURTON K P, DAHMANI R. Effect of surface roughness and complex indices of refraction on polarized thermal emission[J]. Applied Optics, 2005, 44(26): 5361-5367. doi: 10.1364/AO.44.005361
    [13] 寻丽娜, 薛模根, 曾献芳, 等. 飞机材料及其伪装涂层的热红外偏振特性研究[J]. 红外技术,2016,38(9):783-787. doi: 10.11846/j.issn.1001_8891.201609013

    XUN L N, XUE M G, ZENG X F, et al. Research of infrared polarization characteristics of aircraft materials and its camouflage coating[J]. Infrared Technology, 2016, 38(9): 783-787. (in Chinese) doi: 10.11846/j.issn.1001_8891.201609013
    [14] 谢琛, 王峰. 伪装涂层红外偏振辐射特性实验研究[J]. 红外技术,2015,37(10):890-894.

    XIE CH, WANG F. Research on infrared polarization radiation properties experiment of camouflage coating[J]. Infrared Technology, 2015, 37(10): 890-894. (in Chinese)
    [15] 王凯, 刘宏, 张修兴. 空间目标热控涂层材料偏振反射特性研究[J]. 光子学报,2020,49(12):1229003.

    WANG K, LIU H, ZHANG X X. Study on polarized reflection characteristics of space object thermal control coatings[J]. Acta Photonica Sinica, 2020, 49(12): 1229003. (in Chinese)
    [16] FLYNN D S, ALEXANDER C. Polarized surface scattering expressed in terms of a bidirectional reflectance distribution function matrix[J]. Optical Engineering, 1995, 34(6): 1646-1650. doi: 10.1117/12.202105
    [17] 徐文斌, 陈伟力, 李军伟, 等. 采用长波红外高光谱偏振技术的目标探测实验[J]. 红外与激光工程,2017,46(5):0504005. doi: 10.3788/IRLA201746.0504005

    XU W B, CHEN W L, LI J W, et al. Experiment of target detection based on long-wave infrared hyperspectral polarization technology[J]. Infrared and Laser Engineering, 2017, 46(5): 0504005. (in Chinese) doi: 10.3788/IRLA201746.0504005
    [18] 柳祎, 史浩东, 姜会林, 等. 粗糙目标表面红外偏振特性研究[J]. 中国光学,2020,13(3):459-471.

    LIU Y, SHI H D, JIANG H L, et al. Infrared polarization properties of targets with rough surface[J]. Chinese Optics, 2020, 13(3): 459-471. (in Chinese)
    [19] 汪震, 洪津, 叶松, 等. 金属表面粗糙度对热红外偏振特性影响研究[J]. 光子学报,2007,36(8):1500-1503.

    WANG ZH, HONG J, YE S, et al. Study on effect of metal surface roughness on polarized thermal emission[J]. Acta Photonica Sinica, 2007, 36(8): 1500-1503. (in Chinese)
    [20] 汪方斌, 伊龙, 王峰, 等. 基于漫反射优化的金属表面偏振双向反射分布函数[J]. 光学学报,2021,41(11):1129002. doi: 10.3788/AOS202141.1129002

    WANG F B, YI L, WANG F, et al. Polarization bidirectional reflection distribution function of metal surfaces based on diffuse reflection optimization[J]. Acta Optica Sinica, 2021, 41(11): 1129002. (in Chinese) doi: 10.3788/AOS202141.1129002
    [21] 管风, 张晓晖, 韩宏伟. 金属随机粗糙表面的散射光偏振特性的实验研究[J]. 海军工程大学学报,2020,32(6):101-107. doi: 10.7495/j.issn.1009-3486.2020.06.017

    GUAN F, ZHANG X H, HAN H W. Experimental study of polarization properties of scattering light from metal random rough surfaces[J]. Journal of Naval University of Engineering, 2020, 32(6): 101-107. (in Chinese) doi: 10.7495/j.issn.1009-3486.2020.06.017
    [22] TYO J S, RATLIFF B M, BOGER J K, et al. The effects of thermal equilibrium and contrast in LWIR Polarimetric images[J]. Optics Express, 2007, 15(23): 15161-15167. doi: 10.1364/OE.15.015161
    [23] FELTON M, GURTON K P, PEZZANITI J L, et al. Measured comparison of the crossover periods for mid- and long-wave IR (MWIR and LWIR) polarimetric and conventional thermal imagery[J]. Optics Express, 2010, 18(15): 15704-15713. doi: 10.1364/OE.18.015704
    [24] LIU H ZH, SHI Z L, FENG B. An infrared DoLP computational model considering surrounding irradiance[J]. Infrared Physics &Technology, 2020, 106: 103043.
    [25] 杨志勇, 陆高翔, 张志伟, 等. 热辐射环境下目标红外偏振特性分析[J]. 光学学报,2022,42(2):0220001.

    YANG ZH Y, LU G X, ZHANG ZH W, et al. Analysis of infrared polarization characteristics of target in thermal radiation environment[J]. Acta Optica Sinica, 2022, 42(2): 0220001. (in Chinese)
    [26] SU D ZH, LIU L, LIU L SH, et al. An infrared DoLP model considering the radiation coupling effect[J]. Photonics, 2021, 8(12): 546. doi: 10.3390/photonics8120546
    [27] 倪歆玥, 余书田, 唐玉俊, 等. 海雾中舰船目标的偏振探测能力研究[J]. 红外与毫米波学报,2021,40(1):96-101. doi: 10.11972/j.issn.1001-9014.2021.01.014

    NI X Y, YU SH T, TANG Y J, et al. The research on polarimetric detection capability of ship targets in the sea fog[J]. Journal of Infrared and Millimeter Waves, 2021, 40(1): 96-101. (in Chinese) doi: 10.11972/j.issn.1001-9014.2021.01.014
    [28] 张景华, 张焱, 石志广. 基于长波红外的海面场景偏振特性分析与建模[J]. 红外与毫米波学报,2018,37(5):586-594. doi: 10.11972/j.issn.1001-9014.2018.05.011

    ZHANG J H, ZHANG Y, SHI ZH G. Study and modeling of infrared polarization characteristics based on sea scene in long wave band[J]. Journal of Infrared and Millimeter Waves, 2018, 37(5): 586-594. (in Chinese) doi: 10.11972/j.issn.1001-9014.2018.05.011
    [29] PRIEST R G, GERMER T A. Polarimetric BRDF in the microfacet model: theory and measurements[C]. Proceedings of the Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors, NIST, 2000: 169-181.
    [30] HYDE IV M W, SCHMIDT J D, HAVRILLA M J. A geometrical optics polarimetric bidirectional reflectance distribution function for dielectric and metallic surfaces[J]. Optics Express, 2009, 17(24): 22138-22153. doi: 10.1364/OE.17.022138
    [31] PÉREZ J J G, OSSIKOVSKI R. Polarized Light and the Mueller Matrix Approach[M]. Boca Raton: CRC Press, 2016: 107-109.
    [32] THILAK V, VOELZ D G, CREUSERE C D. Polarization-based index of refraction and reflection angle estimation for remote sensing applications[J]. Applied Optics, 2007, 46(30): 7527-7536. doi: 10.1364/AO.46.007527
    [33] 朱达荣, 冯康康, 汪方斌, 等. 粗糙表面六参量偏振双向反射分布函数模型[J]. 激光与光电子学进展,2020,57(9):092901.

    ZHU D R, FENG K K, WANG F B, et al. Six-parameter polarized bidirectional reflectance distribution function model for rough surfaces[J]. Laser &Optoelectronics Progress, 2020, 57(9): 092901. (in Chinese)
    [34] 姚竞争, 韩端锋, 郑向阳. 某三体舰船外形雷达隐身性设计[J]. 舰船科学技术,2011,33(7):62-67. doi: 10.3404/j.issn.1672-7649.2011.07.015

    YAO J ZH, HAN D F, ZHENG X Y. The shape optimal design considering the radar stealthy performance of a trimaran warship[J]. Ship Science and Technology, 2011, 33(7): 62-67. (in Chinese) doi: 10.3404/j.issn.1672-7649.2011.07.015
  • 加载中
图(6)
计量
  • 文章访问数:  859
  • HTML全文浏览量:  397
  • PDF下载量:  298
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-06
  • 修回日期:  2022-04-06
  • 网络出版日期:  2022-06-16

目录

    /

    返回文章
    返回