Ground electronics verification of inter-satellites laser ranging in the Taiji program
-
摘要:
在空间引力波探测太极计划中,激光干涉测距系统是获取引力波信号的直接手段,为了消除激光频率不稳定性对其的影响,需利用时间延迟干涉技术降低噪声的干扰。时间延迟干涉是一种数据后处理方法,要实现该技术的数据构型,需对卫星臂长实现精确的绝对距离测量。本文从太极计划的需求分析出发,分别从信源编码设计、延迟环设计以及数据处理算法等方面介绍测距系统的设计方案。在信源编码中,文章通过分析m序列、gold序列、Weil码三种伪随机码的自、互相关性优劣以及长度选取上的灵活性,最终选择了Weil码并筛选出其自相关性最优的移位-截取组合,将其作为测距系统所用的伪随机码。同时,基于该测距系统,搭建了一套地面电子学验证实验装置,以模拟信号传输的物理过程并验证系统性能。实验主体装置采用一块基于Xilinx公司K7芯片的自研FPGA板卡用以模拟卫星通信测距过程以及实现锁相环、延迟环等功能。实验将24.4 kbps的16位信息码与1.5625 Mbps的1024位Weil码进行BPSK调制,采样频率为50 MHz,通过10~60 m的射频同轴电缆进行传输后,使用质心法对采集数据进行优化,随后测定该距离。实验结果表明:在60 m范围内,测距精度优于1.6 m。实验证明了测距系统原理及设计的可行性,为下一步的光学系统验证奠定了技术基础。
Abstract:In the Taiji program, laser interferometry is utilized to detect the tiny displacement produced by the gravitational wave signals. Due to the large-scale unequal arm, the laser frequency noise is the largest noise budget in the space interferometer system. To reduce the influence of laser frequency noise, a technology called the Time Delay Interferometry (TDI) is utilized to deal with it. The TDI is a kind of data post-processing method, which forms the new data stream by the method of the time delay to initial data. But the premise of TDI needs to obtain accurate absolute arm length between satellites. Thus, for that requirement, we discuss the ranging system scheme and implement a ground electronics verification experiment. The ranging system is based on Direct Sequence Spread Spectrum (DS/SS) modulation, and it mainly includes three parts, which are the signal structure, a Delay Locked Loop (DLL), and a data processing algorithm. In DS/SS modulation, types of pseudo-random code can make a difference to the quality of correlation and the ranging accuracy. Therefore, to design the optimal pseudo-random code, we compare the correlation and flexibility in choosing lengths of the m sequence, gold sequence, and Weil code. Weil code that has a shift-cutoff combination with the best autocorrelation is chosen as the ranging code. The ground electronics verification experiment is set up for simulating the physical process of signal transmission and verifying system performance. The main device of the experiment is a FPGA card based on the K7 chip from Xilinx, which is used to simulate the function of communication and ranging between satellites. Meanwhile, we change the length of the Radio Frequency (RF) coaxial cable to correspond to different ranges. The experimental process can be summarized as follows. Firstly, 16-bit data at 24.4 kbps and 1024-bit Weil code at 1.5625 Mbps are modulated with Binary Phase Shift Keying (BPSK) in the 50 MHz sampling frequency. Then the signal is transmitted through RF coaxial cables of 10 to 60 m in length. In receiving end, the signal is consolidated by DLL and the ranging information is collected. To measure the range accurately, we use a centroid method to optimize the collected data. The results show that the ranging accuracy is better than 1.6 m within 60 m. In conclusion, this experiment proves the principle of the scheme and its feasibility, laying a technical foundation for optical system verification in the future.
-
表 1 伪随机码自相关性对比
Table 1. Autocorrelation comparison of pseudorandom codes
伪随机码 处理(取最优) 码长 最大自相关旁瓣绝对值 dB值 m序列(本原多项式系数2011) 无 1023 0.000977 −120.39 遍历插1或0 1024 0.0469 −86.782 gold序列(本原多项式系数2011、
2157)无 1023 0.06354 −84.136 遍历插1 1024 0.082 −81.929 遍历插0 1024 0.0859 −81.526 Weil码 无 1031 0.0611 −84.544 遍历截取7位 1024 0.0625 −84.288 表 2 实验结果附表
Table 2. Attached table of experimental results
真实值/m 实验平均值/m 均方差(测距精度)/m 10 9.03 0.86 12 11.13 1.21 20 19.24 1.24 30 30.18 1.59 50 50.14 1.35 60 61.23 1.26 表 3 相关峰移动点数在50 MHz采样频率下对应的距离
Table 3. Distances corresponding to the number of shifts of the correlation peak at the 50 MHz sampling frequency
相关峰移动点数 光速时对应距离/m 70%光速对应距离/m 1 6 4.2 2 12 8.4 3 18 12.6 4 24 16.8 5 30 21.0 6 36 25.2 7 42 29.4 … … … 12 72 50.4 14 84 58.8 -
[1] 罗子人, 白姗, 边星, 等. 空间激光干涉引力波探测[J]. 力学进展,2013,43(4):415-447. doi: 10.6052/1000-0992-13-044LUO Z R, BAI SH, BIAN X, et al. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 2013, 43(4): 415-447. (in Chinese) doi: 10.6052/1000-0992-13-044 [2] 罗子人, 张敏, 靳刚. 激光干涉引力波空间阵列核心问题的综合讨论[J]. 科学通报,2019,64(24):2468-2474. doi: 10.1360/TB-2019-0055LUO Z R, ZHANG M, JIN G. Overall discussion on the key problems of a space-borne laser interferometer gravitational wave antenna[J]. Chinese Science Bulletin, 2019, 64(24): 2468-2474. (in Chinese) doi: 10.1360/TB-2019-0055 [3] 罗子人, 张敏, 靳刚, 等. 中国空间引力波探测“太极计划”及“太极1号”在轨测试[J]. 深空探测学报,2020,7(1):3-10. doi: 10.15982/j.issn.2095-7777.2020.20191230001LUO Z R, ZHANG M, JIN G, et al. Introduction of Chinese space-borne gravitational wave detection program "Taiji" and "Taiji-1" satellite mission[J]. Journal of Deep Space Exploration, 2020, 7(1): 3-10. (in Chinese) doi: 10.15982/j.issn.2095-7777.2020.20191230001 [4] 刘河山, 高瑞弘, 罗子人, 等. 空间引力波探测中的绝对距离测量及通信技术[J]. 中国光学,2019,12(3):486-492. doi: 10.3788/co.20191203.0486LIU H SH, GAO R H, LUO Z R, et al. Laser ranging and data communication for space gravitational wave detection[J]. Chinese Optics, 2019, 12(3): 486-492. (in Chinese) doi: 10.3788/co.20191203.0486 [5] 王登峰, 姚鑫, 焦仲科, 等. 面向天基引力波探测的时间延迟干涉技术[J]. 中国光学,2021,14(2):275-288. doi: 10.37188/CO.2020-0098WANG D F, YAO X, JIAO ZH K, et al. Time-delay interferometry for space-based gravitational wave detection[J]. Chinese Optics, 2021, 14(2): 275-288. (in Chinese) doi: 10.37188/CO.2020-0098 [6] DELGADO E, JOSÉ J. Laser Ranging and Data Communication for the Laser Interferometer Space Antenna[M]. Granada: Universidad de Granada, 2012. [7] HEINZEL G, ESTEBAN J J, BARKE S, et al. Auxiliary functions of the LISA laser link: ranging, clock noise transfer and data communication[J]. Classical and Quantum Gravity, 2011, 28(9): 094008. doi: 10.1088/0264-9381/28/9/094008 [8] 韩旭, 李志, 吴耀军, 等. 伪随机码调制的高精度星载激光测距雷达[J]. 红外与激光工程,2022,51(3):20210250.HAN X, LI ZH, WU Y J, et al. High precision ranging lidar based on pseudorandom code modulation[J]. Infrared and Laser Engineering, 2022, 51(3): 20210250. (in Chinese) [9] BAYLE J B, HARTWIG O, STAAB M. Adapting time-delay interferometry for LISA data in frequency[J]. Physical Review D, 2021, 104(2): 023006. doi: 10.1103/PhysRevD.104.023006 [10] 樊昌信, 曹丽娜. 通信原理[M]. 7版. 北京: 国防工业出版社, 2012.FAN CH X, CAO L N. Principles of Communications[M]. 7th ed. Beijing: National Defense Industry Press, 2012. (in Chinese) [11] ABOUZAID S H, AHMAD W A, EIBERT T F, et al. Vital signs monitoring using pseudo-random noise coded Doppler radar with Delta-Sigma modulation[J]. IET Radar,Sonar &Navigation, 2020, 14(11): 1778-1787. [12] 谢钢. GPS原理与接收机设计[M]. 北京: 电子工业出版社, 2009.XIE G. Principles of GPS and Receiver Design[M]. Beijing: Publishing House of Electronics Industry, 2009. (in Chinese) [13] 贝斯特. 锁相环: 设计、仿真与应用[M]. 李永明, 译. 5版. 北京: 清华大学出版社, 2007.BEST R E. Phase-Locked Loops: Design, Simulation, and Applications[M]. LI Y M, trans. 5th ed. Beijing: Tsinghua University Press, 2007. (in Chinese) [14] ESTEBAN J J, BYKOV I, MARÍN A F G, et al. Optical ranging and data transfer development for LISA[J]. Journal of Physics:Conference Series, 2009, 154: 012025. doi: 10.1088/1742-6596/154/1/012025 [15] SWEENEY D. Laser communications for LISA and the University of Florida LISA interferometry simulator[D]. Gainesville: University of Florida, 2012. [16] 张岩奇. 扩频测距技术的研究[D]. 哈尔滨: 哈尔滨理工大学, 2008.ZHANG Y Q. Research on spread spectrum ranging system[D]. Harbin: Harbin University of Science and Technology, 2008. (in Chinese) [17] 马旭辉. 卫星导航信号扩频码设计与性能评估[D]. 西安: 中国科学院大学(中国科学院国家授时中心), 2020.MA X H. Design and performance evaluation of spread spectrum code for satellite navigation signal[D]. Xi’an: National Time Service Center, Chinese Academy of Sciences, 2020. (in Chinese) [18] 张瀚青, 何在民, 叶旅洋, 等. 北斗三号等长Weil码和Gold码性能分析与比较[J]. 计算机仿真,2019,36(8):71-76. doi: 10.3969/j.issn.1006-9348.2019.08.015ZHANG H Q, HE Z M, YE L Y, et al. The analysis and comparison of the performance of the Equi-length Weil and gold codes[J]. Computer Simulation, 2019, 36(8): 71-76. (in Chinese) doi: 10.3969/j.issn.1006-9348.2019.08.015 [19] 叶旅洋. 北斗三号B1C信号模拟产生与性能分析[D]. 西安: 中国科学院大学(中国科学院国家授时中心), 2019.YE L Y. Simulation generate and performance analyse on BDS-3 B1C signal[D]. Xi’an: National Time Service Center, Chinese Academy of Sciences, 2019. (in Chinese) [20] 陈诚. 高动态直接序列扩频通信系统关键算法研究与实现[D]. 成都: 电子科技大学, 2021.CHEN CH. Research and implementation of key algorithms for high dynamic direct sequence spread spectrum communication system[D]. Chengdu: University of Electronic Science and Technology of China, 2021. (in Chinese) [21] 邱子胜, 杨馥, 叶星辰, 等. 基于伪随机码相位调制和相干探测的激光测距技术研究[J]. 激光与光电子学进展,2018,55(5):052801.QIU Z SH, YANG F, YE X CH, et al. Research on laser ranging technology based on pseudo-random code phase modulation and coherent detection[J]. Laser &Optoelectronics Progress, 2018, 55(5): 052801. (in Chinese) [22] 张杏兴, 谢光荣. 同轴电缆及电缆组件装配工艺介绍[J]. 机电元件,2013,33(4):23-27,35. doi: 10.3969/j.issn.1000-6133.2013.04.005ZHANG X X, XIE G R. The process introduction to coaxial cable and cable assembly[J]. Electromechanical Components, 2013, 33(4): 23-27,35. (in Chinese) doi: 10.3969/j.issn.1000-6133.2013.04.005