-
摘要:
为提升光纤水听器拖曳线阵列的适装性,提出一种柔顺型光纤光栅水听器阵列。根据力学理论模型计算3种柔顺型光纤光栅水听器声压灵敏度,比较分析其影响因素,通过有限元仿真进行频响分析,研制了直径分别为10 mm、12 mm和16 mm的2元柔顺型光纤光栅水听器样阵,采用振动液柱法实验测试其灵敏度。实验结果表明:柔顺型光纤光栅水听器在200~800 Hz的频率范围内响应平坦,不同结构参数的水听器阵列平均声压灵敏度分别为−138.90 dB、−134.71 dB、−136.12 dB,验证了理论与仿真分析的正确性。按照本文的设计,通过进一步优化材料和结构参数,采用弱反射光纤光栅,可以构建数百阵元的一体化柔顺型水听器阵列。
Abstract:In order to improve the suitability of the fiber hydrophone towing line array, a flexible fiber grating hydrophone array was proposed.The sound pressure sensitivity of three flexible fiber grating hydrophones was calculated according to the mechanical theoretical model, and the influence factors were compared and analyzed. 2-element flexible fiber hydrophone sample arrays with diameters of 10 mm,12 mm and 16 mm were developed through finite element simulation for frequency response analysis. The sensitivity was measured by a vibration liquid column experiment. The experimental results show that the response is flat within the frequency range of 200~800 Hz, and the average sound pressure sensitivities of the hydrophone arrays with different structural parameters are −138.90 dB, −134.71 dB, and −136.12 dB, respectively. The theory and simulation analysis are verified. By further optimizing the material and structure parameters and using weak reflection fiber grating, an integrated flexible hydrophone array with hundreds of elements can be constructed according to the design in this paper.
-
表 1 水听器基元材料参数
Table 1. Basic material parameters of hydrophone
材料名称 E/ GPa μ ρ/(kg·m−3) PE管(高压聚乙烯) 1.07 0.4101 950 弯曲不敏感光纤 19 0.34 1400 表 2 柔顺型光纤光栅水听器参数及灵敏度
Table 2. Parameters and sensitivities of flexible fiber grating hydrophones
规格 内半径a/mm 外半径b/mm 薄壁厚度D/mm 弹性体长度C/mm 声压灵敏度/dB(re 1rad/μPa) 8 mm×12 mm 4 6 2 66.31 −133.99 8 mm×10 mm 4 5 1 79.58 −128.45 12 mm×16 mm 6 8 2 49.74 −130.80 表 3 不同规格的柔顺型光纤光栅水听器声压灵敏度仿真结果
Table 3. Simulation results of sound pressure sensitivity of flexible fiber grating hydrophones with different specifications
光纤光栅水听器 平均声压灵敏度/ dB(re 1 rad/μPa) 8 mm×12 mm −138.63 8 mm×10 mm −132.90 12 mm×16 mm −135.30 -
[1] 朱辉庆, 张海生. 拖曳线列阵若干关键技术综述[J]. 声学与电子工程,2020(2):54-57.ZHU H Q, ZHANG H SH. Review on some key technologies of towed line array[J]. Acoustics and Electronics Engineering, 2020(2): 54-57. (in Chinese) [2] SOUTO F. Fibre optic towed array: the high tech compact solution for naval warfare[C]. Proceedings of Acoustics 2013, 2013: 297. [3] RAJESH R, SREEHARI CV, VIVEK K, et al. . An eight element hydrophone array using DFB fiber laser with bender bar packaging[C]. 13th International Conference on Fiber Optics and Photonics, OSA, 2016: Th3A. 52. [4] 唐波, 黄俊斌, 顾宏灿, 等. 分布反馈式光纤激光水听器拖曳线列阵实验研究[J]. 光子学报,2017,46(4):0406004. doi: 10.3788/gzxb20174604.0406004TANG B, HUANG J B, GU H C, et al. Experimental research on DFB fiber laser hydrophone towed line array[J]. Acta Photonica Sinica, 2017, 46(4): 0406004. (in Chinese) doi: 10.3788/gzxb20174604.0406004 [5] PLOTNIKOV M Y, LAVROV V S, DMITRASCHENKO P Y, et al. Thin cable fiber-optic hydrophone array for passive acoustic surveillance applications[J]. IEEE Sensors Journal, 2019, 19(9): 3376-3382. doi: 10.1109/JSEN.2019.2894323 [6] ZHANG H Y, WANG X F, ZHAO CH. Sea trial of 16-element DFB-FL hydrophone towed array[J]. Proceedings of SPIE, 2019, 11340: 1134016. [7] 郭振, 高侃, 杨辉, 等. 外径20 mm的光纤光栅干涉型拖曳水听器阵列[J]. 光学学报,2019,39(11):1106003. doi: 10.3788/AOS201939.1106003GUO ZH, GAO K, YANG H, et al. 20 mm diameter interferometric hydrophone towed array based on fiber Bragg gratings[J]. Acta Optica Sinica, 2019, 39(11): 1106003. (in Chinese) doi: 10.3788/AOS201939.1106003 [8] 丁朋. 干涉型弱反射光纤光栅水听器拖曳线列阵关键技术研究[D]. 武汉: 海军工程大学, 2021.DING P. Research on key technology of interferometric weak reflection FBG hydrophone towed line array[D]. Wuhan: Naval University of Engineering, 2021. (in Chinese) [9] 吴妮珊, 夏历. 基于微波光子学的准分布式光纤传感解调技术[J]. 中国光学,2021,14(2):245-263. doi: 10.37188/CO.2020-0121WU N SH, XIA L. Interrogation technology for quasi-distributed optical fiber sensing systems based on microwave photonics[J]. Chinese Optics, 2021, 14(2): 245-263. (in Chinese) doi: 10.37188/CO.2020-0121 [10] CAO W H, CHENG G L. Modeling and experimental research on receiving signal of multi-layer distributed acoustic sensing optical fiber in shallow water[J]. Optical Fiber Technology, 2021, 67: 102692. doi: 10.1016/j.yofte.2021.102692 [11] 邱立忠. 光纤水听器基元特性及PGC检测方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.QIU L ZH. Fiber-optic hydrophone primitive characteristics and the research of detection method based on PGC[D]. Harbin: Harbin Engineering University, 2011. (in Chinese) [12] 徐倩楠, 周次明, 范典, 等. 基于斐索干涉的超弱光纤光栅水听器阵列实验研究[J]. 激光与光电子学进展,2019,56(15):150602.XU Q N, ZHOU C M, FAN D, et al. Experimental study on ultra-weak fiber Bragg grating hydrophone arrays based on Fizeau interference[J]. Laser &Optoelectronics Progress, 2019, 56(15): 150602. (in Chinese) [13] 刘胜, 韩新颖, 熊玉川, 等. 基于弱光纤光栅阵列的分布式振动探测系统[J]. 中国激光,2017,44(2):0210001. doi: 10.3788/CJL201744.0210001LIU SH, HAN X Y, XIONG Y CH, et al. Distributed vibration detection system based on weak fiber Bragg grating array[J]. Chinese Journal of Lasers, 2017, 44(2): 0210001. (in Chinese) doi: 10.3788/CJL201744.0210001