留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光压型高功率激光测量装置的测量重复性研究

赵利强 孙振山 于东钰 杨宏 张云鹏 孙青

赵利强, 孙振山, 于东钰, 杨宏, 张云鹏, 孙青. 光压型高功率激光测量装置的测量重复性研究[J]. 中国光学(中英文), 2023, 16(2): 382-389. doi: 10.37188/CO.2022-0092
引用本文: 赵利强, 孙振山, 于东钰, 杨宏, 张云鹏, 孙青. 光压型高功率激光测量装置的测量重复性研究[J]. 中国光学(中英文), 2023, 16(2): 382-389. doi: 10.37188/CO.2022-0092
ZHAO Li-qiang, SUN Zhen-shan, YU Dong-yu, YANG Hong, ZHANG Yun-peng, SUN Qing. Measurement repeatability of high power laser measuring device based on light pressure[J]. Chinese Optics, 2023, 16(2): 382-389. doi: 10.37188/CO.2022-0092
Citation: ZHAO Li-qiang, SUN Zhen-shan, YU Dong-yu, YANG Hong, ZHANG Yun-peng, SUN Qing. Measurement repeatability of high power laser measuring device based on light pressure[J]. Chinese Optics, 2023, 16(2): 382-389. doi: 10.37188/CO.2022-0092

光压型高功率激光测量装置的测量重复性研究

基金项目: 中央事业单位基本科研业务费项目(No. AKYZD2005-3);市场监管总局质量技术基础能力建设专项(No. ANL2005);国家自然科学基金项目(No. 61205099,No. 11874333)
详细信息
    作者简介:

    赵利强(1982—),男,河南洛阳人,博士,副教授,2010年于北京化工大学获得博士学位,现工作于北京化工大学信息科学与技术学院,主要从事智能检测与传感技术方面的研究。E-mail:zhaolq@mail.buct.edu.cn

    孙 青(1983—),男,安徽合肥人,博士,研究员, 2009年于中国科学技术大学获得博士学位,现工作于中国计量科学研究院光学所,主要从事激光参数测量方面的研究。E-mail:sunqing@nim.ac.cn

  • 中图分类号: O432.1

Measurement repeatability of high power laser measuring device based on light pressure

Funds: Supported by Basic Research Foundation of Central Public Institutions (No. AKYZD2005-3); Project for Quality and Technical Basic Capacity Building of the State Administration of Market Regulation (No. ANL2005); National Natural Science Foundtion of China (No. 61205099, No. 11874333)
More Information
  • 摘要:

    测量重复性是光压测量装置的最大不确定度分量,直接影响测量结果的准确性。为了在高功率激光测量过程中提高功率测量的准确度,搭建了基于光压的高功率激光测量装置,进行了质量测量重复性实验和激光功率测量重复性实验,对两个实验的结果进行了比较分析。实验结果显示,光压测量装置的测量重复性随被测质量和被测功率的增大而逐渐降低,表明光压方法在测量高功率激光时更具优势。在激光功率测量重复性实验中,由于避免了偏载和气流扰动的影响,因此激光功率测量重复性优于根据等效质量计算的测量重复性。研究结果对后续进一步提高光压方法的测量准确度具有指导意义。

     

  • 图 1  高功率激光测量系统的(a)示意图及(b)实物图

    Figure 1.  (a) Schematic diagram and (b) physical map of high power laser measurement system

    图 2  称重模块质量测量重复性

    Figure 2.  Mass measurement repeatabilities of weighing modules

    图 3  1000 W至6000 W激光功率实验测量结果

    Figure 3.  Experimental measurement results of laser power from 1000 W to 6000 W

    图 4  1000 W至6000 W激光功率测量重复性

    Figure 4.  Measurement repeatability of laser power from 1000 W to 6000 W

    图 5  激光功率测量重复性

    Figure 5.  Measurement repeatability of laser power

    图 6  不同功率下光压等效质量测量点分布

    Figure 6.  Distributions of light pressure measurement points under different powers

    图 7  计算合成重复性与实测激光功率重复性对比结果

    Figure 7.  Comparison of calculated synthetic repeatabilities and measured repeatability of laser power

    表  1  理论计算与实际测量的重复性比较

    Table  1.   Comparison of repeatability between theoretical calculation and actual measurement

    Laser
    Power
    /kW
    Equivalent
    mass
    /mg
    Calculated
    synthetic
    repeatability/%
    (${m_r}$=7 μg)
    Calculated
    synthetic
    repeatability/%
    (${m_r}$=5 μg)
    Measured
    laser power
    repeatability
    y/%
    1.000.641.0980.7880.791
    2.001.280.5560.4030.429
    3.001.920.3780.2790.321
    4.002.560.2910.2190.196
    5.003.200.2410.1860.201
    6.003.840.2080.1640.211
    下载: 导出CSV

    表  2  光压测量装置测量不确定度结果

    Table  2.   Uncertainty budgets of light pressure measuring device

    Uncertainty
    component
    Type1 kW
    (0.64 mg)
    3 kW
    (1.92 mg)
    6 kW
    (3.84 mg)
    Uncertainty of
    standard weights
    B0.00160.00050.0003
    Mirror reflectivityB0.00030.00030.0003
    Incidence angleB0.00300.00300.0030
    RepeatabilityA0.00790.00320.0021
    ResolutionB0.00450.00150.0008
    NonlinearityB0.00100.00100.0010
    Standard uncertainty (k=1)0.976%0.476%0.390%
    Expanded uncertainty (k=2)1.95%0.96%0.78%
    下载: 导出CSV

    表  3  光压法与量热法测量结果比较

    Table  3.   Comparison of measurement results between the light pressure method and the calorimetric method

    Measured power of calorimetric power meter/kWMeasured mass/mgMeasured power of light pressure power meter/kWRelative deviation/%
    0.9960.6441.0071.10
    1.9971.2892.0150.90
    2.9791.9193.0010.74
    3.9602.5503.9890.73
    4.9743.1954.9970.46
    5.9743.8466.0150.69
    下载: 导出CSV
  • [1] 邓永丽, 李庆, 黄学杰. 锂离子动力电池极片的激光切割分析[J]. 中国光学,2018,11(6):974-982. doi: 10.3788/co.20181106.0974

    DENG Y L, LI Q, HUANG X J. Analysis of laser cutting of lithium-ion power battery pole piece[J]. Chinese Optics, 2018, 11(6): 974-982. (in Chinese) doi: 10.3788/co.20181106.0974
    [2] 张国栋, 程光华, 张伟. 超快激光选区焊接技术研究进展[J]. 中国光学,2020,13(6):1209-1223. doi: 10.37188/CO.2020-0131

    ZHANG G D, CHENG G H, ZHANG W. Progress in ultrafast laser space-selective welding[J]. Chinese Optics, 2020, 13(6): 1209-1223. (in Chinese) doi: 10.37188/CO.2020-0131
    [3] ABOULKHAIR N T, SIMONELLI M, PARRY L, et al. 3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting[J]. Progress in Materials Science, 2019, 106: 100578. doi: 10.1016/j.pmatsci.2019.100578
    [4] ABBASS M K. Laser surface treatment and modification of aluminum alloy matrix composites[J]. Lasers in Manufacturing and Materials Processing, 2018, 5(2): 81-94. doi: 10.1007/s40516-018-0054-6
    [5] WILLIAMS P A, HADLER J A, CROMER C, et al. Flowing-water optical power meter for primary-standard, multi-kilowatt laser power measurements[J]. Metrologia, 2018, 55(3): 427-436. doi: 10.1088/1681-7575/aaae78
    [6] 黎高平, 杨鸿儒, 杨斌, 等. 绝对吸收式激光能量计高准确度校准技术研究[J]. 应用光学,2014,35(3):438-440,458.

    LI G P, YANG H R, YANG B, et al. High-accuracy optical calibration technology for absolute-absorbing laser energy meter[J]. Journal of Applied Optics, 2014, 35(3): 438-440,458. (in Chinese)
    [7] 黄麒力, 胡林林, 马国武, 等. 基于量热法的大功率毫米波功率测量及校准系统设计[J]. 强激光与粒子束,2022,34(4):043005.

    HUANG Q L, HU L L, MA G W, et al. Design of high power millimeter wave power measurement and calibration system based on calorimetry[J]. High Power Laser and Particle Beams, 2022, 34(4): 043005. (in Chinese)
    [8] WILLIAMS P, HADLER J, MARING F, et al. Portable, high-accuracy, non-absorbing laser power measurement at kilowatt levels by means of radiation pressure[J]. Optics Express, 2017, 25(4): 4382-4392. doi: 10.1364/OE.25.004382
    [9] WILLIAMS P A, ARTUSIO-GLIMPSE A B, HADLER J A, et al. Radiation-pressure-enabled traceable laser sources at CW powers up to 50 kW[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(6): 1833-1839. doi: 10.1109/TIM.2018.2886108
    [10] PINOT P, SILVESTRI Z. Optical power meter using radiation pressure measurement[J]. Measurement, 2019, 131: 109-119. doi: 10.1016/j.measurement.2018.07.087
    [11] KECK L, SHAW G, THESKA R, et al. Design of an electrostatic balance mechanism to measure optical power of 100 kW[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 7002909.
    [12] 孙青, 马冲, 林延东, 等. 基于光压原理的高功率激光测量装置[J]. 中国激光,2021,48(3):0315002. doi: 10.3788/CJL202148.0315002

    SUN Q, MA CH, LIN Y D, et al. High-power laser measurement device based on light pressure principle[J]. Chinese Journal of Lasers, 2021, 48(3): 0315002. (in Chinese) doi: 10.3788/CJL202148.0315002
    [13] MANSKE E, FRÖHLICH T, VASILYAN S. Photon momentum induced precision small forces: a static and dynamic check[J]. Measurement Science and Technology, 2019, 30(10): 105004. doi: 10.1088/1361-6501/ab257e
    [14] ARTUSIO-GLIMPSE A B, ROGERS K A, WILLIAMS P A, et al. High amplification laser-pressure optic enables ultra-low uncertainty measurements of optical laser power at kilowatt levels[J]. Metrologia, 2021, 58(5): 055010. doi: 10.1088/1681-7575/ac1e34
    [15] VASILYAN S, LÓPEZ M, ROGGE N, et al. Revisiting the limits of photon momentum based optical power measurement method, employing the case of multi-reflected laser beam[J]. Metrologia, 2021, 58(1): 015006. doi: 10.1088/1681-7575/abc86e
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  877
  • HTML全文浏览量:  357
  • PDF下载量:  359
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 修回日期:  2022-06-09
  • 录用日期:  2022-08-24
  • 网络出版日期:  2022-08-24

目录

    /

    返回文章
    返回