-
摘要:
目前,电弧激励器的仿真研究仅局限于得到激励器产生的等离子体的电势、压力、温度和速度等工作特性,而其有关的等离子体状态参数仅限于用光谱诊断其电子温度和电子密度等,二者是分立的,本文试图将其二者统一起来。本文设计了电弧射流等离子体激励器,采用有限元法求解非线性多物理场方程,对此电弧射流等离子体激励器的工作特性进行了数值模拟,得到了激励器内部的电势、压力、温度和速度分布,并在此基础上计算了电子密度,由激励器工况得到了激励器等离子体状态参数(电子温度和电子密度)的仿真计算模型。然后采用发射光谱诊断方法对射流等离子体进行了光谱诊断,利用分立谱线的强度比例法对等离子体电子密度进行计算。结果表明:电弧等离子体激励器诊断实验得到的最高电子温度为10505.8 K,最大电子密度为5.75×1022 m−3。对于不同工况下的等离子体电子温度和等离子体密度,实验和仿真结果数值均随入口气体流量增大及放电电流的增大而增大。表明对于所设计的小型化、高射流速度的电弧射流激励器等离子体状态参数的仿真计算模型是合理且适用的。说明将激励器工作特性仿真与光谱诊断的电子温度、密度统一考虑是基本成功的,同时还有值得进一步改进的地方。
Abstract:At present, the simulation research of arc actuators is limited to only obtaining the working characteristics of the plasma generated by the actuator, such as potential, pressure, temperature and velocity, while the plasma state is limited to only diagnosing its electron temperature and electron density by spectrum. The two are separated. This paper attempts to unify the two. Therefore, the arc jet plasma actuator designed here adopts the finite element method to solve the nonlinear multi physical equations. The working characteristics of the arc jet plasma actuator are numerically simulated, and the potential, pressure, temperature and velocity distributions inside the actuator are obtained. On this basis, the electron density is calculated and the simulation calculation model of the plasma state (electron temperature and electron density) of the actuator is obtained from the working condition of the actuator. Then the spectral diagnosis of the jet plasma is carried out by using the emission spectral diagnosis method, and the electron density of plasma is calculated by using the intensity ratio method of discrete spectral lines. The diagnostic experiment of the arc plasma actuator shows that the maximum electron temperature is 10505.8 K and the maximum electron density is 5.75×1022 m−3. For the plasma electron temperature and plasma density under different working conditions, the experimental and simulation results increase with the increase of inlet gas flow and discharge current. It shows that our simulation model of plasma state is reasonable and applicable for our miniaturized arc jet actuator with high jet velocity.
-
Key words:
- emission spectrum /
- spectroscopy /
- electron density /
- arc actuator
-
表 1 不同工况下得到的实验和仿真结果
Table 1. Experimental and simulation results under different working conditions
Condition Number Preset current/A Discharge Current/A Discharge Voltage/V Rate of Flow/(L·min−1) Te from experiment/K ne from experiment/m−3 Te from Simulation/K ne from Simulation/m−3 1 80 58 32 40 10505.8 5.75×1022 11743 2.45×1022 2 80 52.8 31 30 10184.6 2.53×1022 11258 1.75×1022 3 80 50.4 32 20 9943.6 1.31×1022 10656 1.11×1022 4 80 49.7 27 20 10451.8 4.87×1022 10623 1.08×1022 5 75 48.9 28 20 10226.0 2.77×1022 10582 1.04×1022 6 70 47.9 28 20 9925.7 1.27×1022 10530 9.96×1021 -
[1] SHIN J, NARAYANASWAMY V, RAJA L L, et al. Characterization of a direct-current glow discharge plasma actuator in low-pressure supersonic flow[J]. AIAA Journal, 2007, 45(7): 1596-1605. doi: 10.2514/1.27197 [2] NARAYANASWAMY V, RAJA L L, CLEMENS N T. Characterization of a high-frequency pulsed-plasma jet actuator for supersonic flow control[J]. AIAA Journal, 2010, 48(2): 297-305. doi: 10.2514/1.41352 [3] ZHAO N, LI J M, MA Q X, et al. Periphery excitation of laser-induced CN fluorescence in plasma using laser-induced breakdown spectroscopy for carbon detection[J]. Chinese Optics Letters, 2020, 18(8): 083001. doi: 10.3788/COL202018.083001 [4] BELINGER A, NAUDÉ N, CAMBRONNE J P, et al. Plasma synthetic jet actuator: electrical and optical analysis of the discharge[J]. Journal of Physics D:Applied Physics, 2014, 47(34): 345202. doi: 10.1088/0022-3727/47/34/345202 [5] INOUE K, TAKAHASHI S, SAKAKIBARA N, et al. Spatiotemporal optical emission spectroscopy to estimate electron density and temperature of plasmas in solution[J]. Journal of Physics D:Applied Physics, 2020, 53(23): 235202. doi: 10.1088/1361-6463/ab78d5 [6] 潘成刚. 脉冲MIG焊电弧物理特性光谱诊断 [D]. 上海: 上海交通大学, 2013.PAN C G. Diagnosis the physical characteristics of pulsed MIG welding arc by spectrum[D]. Shanghai: Shanghai Jiao Tong University, 2013. (in Chinese) [7] 林敏, 徐浩军, 魏小龙, 等. 射频电感耦合闭式等离子体产生与光谱诊断的实验[J]. 空军工程大学学报(自然科学版),2015,16(2):10-14.LIN M, XU H J, WEI X L, et al. Experimental study of generation and spectroscopic diagnosis of inductively coupled plasma in closed cavity[J]. Journal of Air Force Engineering University (Natural Science Edition), 2015, 16(2): 10-14. (in Chinese) [8] 李磊, 陈晓东, 袁承勋, 等. Ar等离子体射流发射光谱诊断研究[J]. 发光学报,2019,40(8):1049-1054. doi: 10.3788/fgxb20194008.1049LI L, CHEN X D, YUAN CH X, et al. Emission spectrum diagnose to Ar plasma jet[J]. Chinese Journal of Luminescence, 2019, 40(8): 1049-1054. (in Chinese) doi: 10.3788/fgxb20194008.1049 [9] 陈传杰. 大气压脉冲调制表面波等离子体的发射光谱诊断及特性研究[D]. 大连: 大连理工大学, 2019.CHEN CH J. Optical emission spectroscopic diagnosis on atmospheric-pressure pulse-modulated surface wave plasma and its characteristics[D]. Dalian: Dalian University of Technology, 2019. (in Chinese) [10] 张申, 郭玉玉. 一锅法合成聚乙烯吡咯烷酮修饰的铜纳米团簇用于槲皮素的检测[J]. 应用化学,2020,37(9):1069-1075. doi: 10.11944/j.issn.1000-0518.2020.09.200045ZHANG SH, GUO Y Y. One-pot synthesis of fluorescent polyvinyl pyrrolidone-stabilized Cu nanoclusters for the determination of quercetin[J]. Chinese Journal of Applied Chemistry, 2020, 37(9): 1069-1075. (in Chinese) doi: 10.11944/j.issn.1000-0518.2020.09.200045 [11] ZHAO M T, ZHANG D W, ZHENG L L, et al. Rapid quantitative detection of mineral oil contamination in vegetable oil by near-infrared spectroscopy[J]. Chinese Optics Letters, 2020, 18(4): 043001. doi: 10.3788/COL202018.043001 [12] 刘丽娴, 宦惠庭, ANDREAS M, 等. 多组分变压器油溶解气体的傅里叶变换红外光声光谱定量检测[J]. 光谱学与光谱分析,2020,40(3):684-687.LIU L X, HUAN H T, ANDREAS M, et al. Multiple dissolved gas analysis in transformer oil based on Fourier transform infrared photoacoustic spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020, 40(3): 684-687. (in Chinese) [13] 邓培渊, 袁伟, 李长看, 等. 防腐剂苯甲酸与人血清白蛋白相互作用[J]. 应用化学,2021,38(8):1014-1021.DENG P Y, YUAN W, LI CH K, et al. Interaction between preservative benzoic acid and human serum albumin[J]. Chinese Journal of Applied Chemistry, 2021, 38(8): 1014-1021. (in Chinese) [14] DENG A H, ZENG Z X, DENG J J. VIPA-based two-component detection for a coherent population trapping experiment[J]. Chinese Optics Letters, 2021, 19(8): 083001. doi: 10.3788/COL202119.083001 [15] 邢雅艳, 史宇哲, 邓世贤, 等. 儿茶素-银纳米复合材料的制备及其应用[J]. 应用化学,2020,37(9):1062-1068. doi: 10.11944/j.issn.1000-0518.2020.09.200076XING Y Y, SHI Y ZH, DENG SH X, et al. Preparation and application of catechin-silver nanocomposites[J]. Chinese Journal of Applied Chemistry, 2020, 37(9): 1062-1068. (in Chinese) doi: 10.11944/j.issn.1000-0518.2020.09.200076 [16] JO J, SIDDIQUI J, ZHU Y H, et al. Photoacoustic spectral analysis at ultraviolet wavelengths for characterizing the Gleason grades of prostate cancer[J]. Optics Letters, 2020, 45(21): 6042-6045. doi: 10.1364/OL.409249 [17] CHU Y W, CHEN F, TANG Y, et al. Diagnosis of nasopharyngeal carcinoma from serum samples using hyperspectral imaging combined with a chemometric method[J]. Optics Express, 2018, 26(22): 28661-28671. doi: 10.1364/OE.26.028661 [18] CHEN K, QIN Y J, ZHENG F, et al. Diagnosis of colorectal cancer using Raman spectroscopy of laser-trapped single living epithelial cells[J]. Optics Letters, 2006, 31(13): 2015-2017. doi: 10.1364/OL.31.002015 [19] ZHU CH F, BRESLIN T M, HARTER J, et al. Model based and empirical spectral analysis for the diagnosis of breast cancer[J]. Optics Express, 2008, 16(19): 14961-14978. doi: 10.1364/OE.16.014961 [20] CHEN G, ZHU J ZH, LI X G. Influence of a dielectric decoupling layer on the local electric field and molecular spectroscopy in plasmonic nanocavities: a numerical study[J]. Chinese Optics Letters, 2021, 19(12): 123001. doi: 10.3788/COL202119.123001 [21] ZHAO Y ZH, SU Y L, HOU X Y, et al. Directional sliding of water: biomimetic snake scale surfaces[J]. Opto-Electronic Advances, 2021, 4(4): 210008. doi: 10.29026/oea.2021.210008 [22] LI J Z, HU J CH, MA J Q, et al. Identifying self-trapped excitons in 2D perovskites by Raman spectroscopy [Invited][J]. Chinese Optics Letters, 2021, 19(10): 103001. doi: 10.3788/COL202119.103001 [23] MAŠLÁNI A, SEMBER V, HRABOVSKÝ M. Spectroscopic determination of temperatures in plasmas generated by arc torches[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2017, 133: 14-20. doi: 10.1016/j.sab.2017.04.011 [24] 董丽芳, 刘为远, 杨玉杰, 等. 大气压等离子体炬电子密度的光谱诊断[J]. 物理学报,2011,60(4):045202. doi: 10.7498/aps.60.045202DONG L F, LIU W Y, YANG Y J, et al. Spectral diagnostics of electron density of plasma torch at atmospheric pressure[J]. Acta Physica Sinica, 2011, 60(4): 045202. (in Chinese) doi: 10.7498/aps.60.045202 [25] 姜旭, 史宗谦, 李兴文, 等. 不同灭弧介质中等离子体的光谱诊断[C]. 输变电年会, 2011.JIANG X, SHI Z Q, LI X W, et al. . Spectral diagnosis of plasma in different arc extinguishing media[C]. Annual Meeting of Power Transmission and Transformation, 2011. (in Chinese) [26] WEN K, LIU X ZH, LIU M, et al. Numerical simulation and experimental study of Ar-H2 DC atmospheric plasma spraying[J]. Surface and Coatings Technology, 2019, 371: 312-321. doi: 10.1016/j.surfcoat.2019.04.053 [27] XU X W, YANG SH Y, ZHOU Q, et al. A 2-D axisymmetric magneto-hydrodynamic model of a DC arc plasma torch and its solution methodology[J]. IEEE Transactions on Magnetics, 2020, 56(1): 7503904. [28] GANIÈV Y C, GORDEEV V P, KRASILNIKOV A V, et al. Aerodynamic drag reduction by plasma and hot-gas injection[J]. Journal of Thermophysics and Heat Transfer, 2000, 14(1): 10-17. doi: 10.2514/2.6504 [29] CHINÈ B. A 2D model of a plasma torch[C]. Proceedings of the 2016 COMSOL Conference, 2016. [30] 张金禾, 周严东, 刘汝兵, 等. 低压汞灯等离子体电子密度分布光谱诊断研究[J]. 机电技术,2015(6):88-91. doi: 10.3969/j.issn.1672-4801.2015.06.029ZHANG J H, ZHOU Y D, LIU R B, et al. Spectral diagnosis of plasma electron density distribution in low pressure mercury lamp[J]. Mechanical &Electrical Technology, 2015(6): 88-91. (in Chinese) doi: 10.3969/j.issn.1672-4801.2015.06.029