留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大口径巡天望远镜分区域曲率传感方法研究

安其昌 吴小霞 张景旭 李洪文 朱嘉康 蔡雨岐

安其昌, 吴小霞, 张景旭, 李洪文, 朱嘉康, 蔡雨岐. 大口径巡天望远镜分区域曲率传感方法研究[J]. 中国光学(中英文), 2023, 16(2): 358-365. doi: 10.37188/CO.2022-0117
引用本文: 安其昌, 吴小霞, 张景旭, 李洪文, 朱嘉康, 蔡雨岐. 大口径巡天望远镜分区域曲率传感方法研究[J]. 中国光学(中英文), 2023, 16(2): 358-365. doi: 10.37188/CO.2022-0117
AN Qi-chang, WU Xiao-xia, ZHANG Jing-xu, LI Hong-wen, ZHU Jia-kang, CAI Yu-qi. Sub region curvature sensing method for survey telescope with larger aperture[J]. Chinese Optics, 2023, 16(2): 358-365. doi: 10.37188/CO.2022-0117
Citation: AN Qi-chang, WU Xiao-xia, ZHANG Jing-xu, LI Hong-wen, ZHU Jia-kang, CAI Yu-qi. Sub region curvature sensing method for survey telescope with larger aperture[J]. Chinese Optics, 2023, 16(2): 358-365. doi: 10.37188/CO.2022-0117

大口径巡天望远镜分区域曲率传感方法研究

基金项目: 国家自然科学基金项目(No. 62005279,No. 12133009);中国科学院青年创新促进会(No. 2020221);中国科学院装备研制项目(No. YJKYYQ20200057);吉林省科技发展计划(No. 20220402032GH)
详细信息
    作者简介:

    安其昌(1988—),男,山西太原人,博士,副研究员,中国科学院青年创新促进会成员。2011于中国科学技术大学获得工学学士学位,2018 年于中国科学院大学获得博士学位,现就职于中国科学院长春光机所,研究方向为大口径光机系统检测装调。E-mail:anjj@mail.ustc.edu.cn

  • 中图分类号: TH751

Sub region curvature sensing method for survey telescope with larger aperture

Funds: Supported by National Natural Science Foundation of China (No. 62005279, No. 12133009); the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2020221); the Equipment Development Project of the Chinese Academy of Sciences (No. YJKYYQ20200057); Jilin Science and Technology Development Program (No. 20220402032GH)
More Information
  • 摘要:

    大口径巡天望远镜需要基于波前传感系统的反馈,进行主动光学闭环校正,以更好地发挥其极限探测能力。本文面向大口径巡天望远镜波前传感过程中,离焦星点像重合所导致的导星数量下降的问题,首先针对分区域曲率传感的基本理论表达进行了推导,之后,通过建立联合仿真模型,利用光学设计软件与数值计算软件之间的通讯交互,对分区域曲率传感的过程进行了仿真分析。最后,通过搭建桌面实验,分别就单目标与多目标的曲率传感进行了交叉比对,验证了算法的正确性。针对标准波前,本文所提出的方法与单导星曲率传感相比,误差为0.02个工作波长(RMS),误差在10%以内,可在传统主动光学技术的基础上,通过扩展可用导星,提升探测信噪比与采样速度,有效提升主动光学系统校正能力。

     

  • 图 1  分区域传感过程示意图

    Figure 1.  Schematic diagram of sub regional sensing process

    图 2  导星重叠与离焦量之间的关系

    Figure 2.  Relationship between guide star overlap and defocus amount

    图 3  相互交叠的离焦星点像

    Figure 3.  Overlapping defocused star images

    图 5  小像差下的离焦星点像(a)重建波前与(b)原始波前

    Figure 5.  (a) Reconstructed wavefront and (b) original wavefront of stitching defocused star point image under small aberration

    图 8  分割拼接的离焦星点像(大像差)。(a)焦前能量分布;(b)焦后能量分布;(c)光强分布差分

    Figure 8.  Segmented and spliced defocused star point image (large aberration). (a) Pre-focal energy distribution; (b) post-focal energy distribution; (c) light intensity distribution difference

    图 4  分割拼接的离焦星点像(小像差)。(a)焦前能量分布;(b)焦后能量分布;(c)光强分布差分

    Figure 4.  Segmented and spliced defocused star point image (small aberration). (a) Pre-focal energy distribution; (b) post-focal energy distribution; (c) light intensity distribution difference

    图 6  小像差下的离焦星点像拼接复原效果。(a)重建波前与原始波前相关函数;(b)泽尼克系数对比

    Figure 6.  Restoration effect of defocused star image stitching under small aberration. (a) Comparison of correlation function between reconstructed wavefront and original wavefront; (b) Zernike coefficient

    图 7  大像差下的离焦星点像拼接结果。(a)重建波前与(b)原始波前

    Figure 7.  (a) Reconstructed wavefront and (b)original wavefront of stitching defocused star image under large aberration

    图 10  5 cm相干长度下湍流对像差提取的影响。(a)焦前能量分布;(b)焦后能量分布;(c)光强分布差分;(d)短曝光重建波前(10 ms);(e)长曝光重建波前(100 ms);(f)原始波前

    Figure 10.  Influence of turbulence on aberration extraction at 5 cm coherence length. (a) Pre-focal energy distribution; (b) post-focal energy distribution; (c) light intensity distribution difference; (d) short exposure reconstruction wavefront (10 ms); (e) long exposure reconstruction wavefront (100 ms); (f) original wavefront

    图 11  (a)模拟双星检测强度分布;(b)实验现场;(c)两种形式的波前传感结果对比

    Figure 11.  (a) Simulated binary detection intensity distribution; (b) experimental site; (c) comparison of two wavefront sensing results

    图 9  大像差下的离焦星点像拼接复原效果。(a)重建波前与原始波前相关函数与(b)泽尼克系数对比

    Figure 9.  Restoration effect of defocused star image stitching under large aberration. (a) Correlation function and (b) Zernike coefficient comparison between reconstructed wavefront and original wavefront

  • [1] GANSICKE B T, SCHREIBER M R, TOLOZA O, et al. Accretion of a giant planet onto a white dwarf star[J]. Nature, 2019, 576(7785): 61-64. doi: 10.1038/s41586-019-1789-8
    [2] EGDALL I M. Manufacture of a three-mirror wide-field optical system[J]. Optical Engineering, 1985, 24(2): 242285. doi: 10.1117/12.7973470
    [3] SEBRING T A, DUNHAM E W, MILLIS R L, et al. The discovery channel telescope: a wide-field telescope in northern Arizona[J]. Proceedings of SPIE, 2004, 5489: 658-666. doi: 10.1117/12.551720
    [4] ROODMAN A, REIL K, DAVIS C. Wavefront sensing and the active optics system of the dark energy camera[J]. Proceedings of SPIE, 2014, 9145: 914516.
    [5] HOLZLÖHNER R, TAUBENBERGER S, RAKICH A P, et al. Focal-plane wavefront sensing for active optics in the VST based on an analytical optical aberration model[J]. Proceedings of SPIE, 2016, 9906: 99066E.
    [6] GUNN J E, SIEGMUND W A, MANNERY E J, et al. The 2.5 m telescope of the Sloan digital sky survey[J]. The Astronomical Journal, 2006, 131(4): 2332-2359. doi: 10.1086/500975
    [7] WOODS D F, SHAH R Y, JOHNSON J A, et al. Space Surveillance Telescope: focus and alignment of a three mirror telescope[J]. Optical Engineering, 2013, 52(5): 053604. doi: 10.1117/1.OE.52.5.053604
    [8] HARBECK D R, BOROSON T, LESSER M, et al. The WIYN one degree imager 2014: performance of the partially populated focal plane and instrument upgrade path[J]. Proceedings of SPIE, 2014, 9147: 91470P.
    [9] PINIARD M, SORRENTE B, HUG G, et al. Melt pool monitoring in laser beam melting with two-wavelength holographic imaging[J]. Light:Advanced Manufacturing, 2022, 3(1): 11. doi: 10.37188/lam.2022.011
    [10] 张天宇, 王钢, 张熙, 等. 基于焦面复制方法的自适应光学系统静态像差校正技术[J]. 中国光学,2022,15(3):545-551. doi: 10.37188/CO.2021-0182

    ZHANG T Y, WANG G, ZHANG X, et al. Statica berration correction technique for adaptive optics system based on focal-plane copy approach[J]. Chinese Optics, 2022, 15(3): 545-551. (in Chinese) doi: 10.37188/CO.2021-0182
    [11] GENG Z CH, TONG ZH, JIANG X Q. Review of geometric error measurement and compensation techniques of ultra-precision machine tools[J]. Light:Advanced Manufacturing, 2021, 2(2): 14.
    [12] SU R, LEACH R. Physics-based virtual coherence scanning interferometer for surface measurement[J]. Light:Advanced Manufacturing, 2021, 2(2): 9.
    [13] 王丰璞, 李新南, 徐晨, 等. 大型光学红外望远镜拼接非球面子镜反衍补偿检测光路设计[J]. 中国光学,2021,14(5):1184-1193. doi: 10.37188/CO.2020-0218

    WANG F P, LI X N, XU CH, et al. Optical testing path design for LOT aspheric segmented mirrors with reflective-diffractive compensation[J]. Chinese Optics, 2021, 14(5): 1184-1193. (in Chinese) doi: 10.37188/CO.2020-0218
    [14] 张磊, 吴金灵, 刘仁虎, 等. 光学自由曲面自适应干涉检测研究新进展[J]. 中国光学,2021,14(2):227-244. doi: 10.37188/CO.2020-0126

    ZHANG L, WU J L, LIU R H, et al. Research advances in adaptive interferometry for optical freeform surfaces[J]. Chinese Optics, 2021, 14(2): 227-244. (in Chinese) doi: 10.37188/CO.2020-0126
    [15] 陈波, 杨靖, 李新阳, 等. 波前曲率传感自适应光学的模式型控制技术[J]. 光学学报,2016,36(2):0201002. doi: 10.3788/AOS201636.0201002

    CHEN B, YANG J, LI X Y, et al. Modal control technique of adaptive optics with wavefront curvature sensing[J]. Acta Optica Sinica, 2016, 36(2): 0201002. (in Chinese) doi: 10.3788/AOS201636.0201002
  • 加载中
图(11)
计量
  • 文章访问数:  593
  • HTML全文浏览量:  249
  • PDF下载量:  341
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-10
  • 修回日期:  2022-06-28
  • 网络出版日期:  2022-08-12

目录

    /

    返回文章
    返回