留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高倍汇聚辐射光斑能流分布测量方法研究

魏秀东 赵宇航 张亚南 许英朝

魏秀东, 赵宇航, 张亚南, 许英朝. 高倍汇聚辐射光斑能流分布测量方法研究[J]. 中国光学(中英文), 2023, 16(3): 620-626. doi: 10.37188/CO.2022-0139
引用本文: 魏秀东, 赵宇航, 张亚南, 许英朝. 高倍汇聚辐射光斑能流分布测量方法研究[J]. 中国光学(中英文), 2023, 16(3): 620-626. doi: 10.37188/CO.2022-0139
WEI Xiu-dong, ZHAO Yu-hang, ZHANG Ya-nan, XU Ying-chao. A flux measurement for high-magnification convergent radiation spots[J]. Chinese Optics, 2023, 16(3): 620-626. doi: 10.37188/CO.2022-0139
Citation: WEI Xiu-dong, ZHAO Yu-hang, ZHANG Ya-nan, XU Ying-chao. A flux measurement for high-magnification convergent radiation spots[J]. Chinese Optics, 2023, 16(3): 620-626. doi: 10.37188/CO.2022-0139

高倍汇聚辐射光斑能流分布测量方法研究

基金项目: 福建省自然科学基金面上项目(No. 2019J01876)
详细信息
    作者简介:

    魏秀东(1979—),男,河北河间人,博士,副研究员,硕士生导师,2004年7月于吉林大学通信工程学院光信息科学与技术专业获得工学学士学位;2009年7月于中国科学院长春光学精密机械与物理研究所获得光学博士学位,主要从事太阳能光热发电聚光系统设计及光学性能检测技术的研究。E-mail: weixiudong211@163.com

    赵宇航(1998—),男,河北石家庄人,硕士研究生,2020年6月于文华学院信息科学与技术学部光电信息科学与工程专业获得学士学位,主要从事聚焦光斑辐射热流测量等方面研究。E-mail:752165854@qq.com

  • 中图分类号: TK313;TK519

A flux measurement for high-magnification convergent radiation spots

Funds: Supported by Natural Science Foundation of Fujian Province (No. 2019J01876)
More Information
    Corresponding author: weixiudong211@163.com
  • 摘要:

    本文提出了一种高倍汇聚辐射光斑能流分布测量新方法,采用辐射能流传感器测量光斑不同位置的能流密度,通过多项式拟合光斑不同位置的灰度与能流密度标定曲线,最终获得辐射光斑的能流分布,并详细阐述了辐射光斑能流分布的测量原理。为了验证测量方法的准确性和可行性,进行了高倍汇聚辐射光斑能流分布测量实验,并与辐射能流传感器测量结果进行比较。结果表明:该测量方法的测量结果与辐射能流传感器的直接测量结果一致,测量偏差小于0.54%,通过分析得出该测量方法的测量不确定度为4.35%,测量准确度较传统测量方法有所提高,满足实际应用需求。

     

  • 图 1  辐射光斑能流分布测量系统原理

    Figure 1.  Measurement principle of radiation spot heat flux distribution

    图 2  光斑多个位置辐射能流密度测量原理

    Figure 2.  Measurement principle of radiation flux distribution of spot at different positions

    图 3  6kW氙灯聚光实验测试平台

    Figure 3.  6kW xenon lamp spotlight experiment test platform

    图 4  氙灯聚集光斑的灰度图像

    Figure 4.  Grayscale image of focused spot of xenon lamp

    图 5  辐射能流传感器测量结果与传统间接测量结果比较

    Figure 5.  Comparison of measurement results of radiant flux sensor with traditional indirect measurement results

    图 6  灰度值与标定因子的关系

    Figure 6.  Relationship between gray and calibration factor

    图 7  传统间接测量结果、辐射能流传感器直接测量结果和多项式标定测量结果比较

    Figure 7.  Comparison of traditional indirect measurement, direct measurement and polynomial calibration measurement results

    图 8  测量结果相对偏差

    Figure 8.  Relative deviation of measurement results

    图 9  辐射能流传感器校准结果

    Figure 9.  Calibration results of radiation flux sensor

  • [1] SARWAR J, GEORGAKIS G, LACHANCE R, et al. Description and characterization of an adjustable flux solar simulator for solar thermal, thermochemical and photovoltaic applications[J]. Solar Energy, 2014, 100: 179-194. doi: 10.1016/j.solener.2013.12.008
    [2] ERICKSON B M. Characterization of the Universiy of Florida solar simulator and an inverse solution for identifying intensity distributions from multiple flux maps in concentrating solar applications[D]. Gainesville: University of Florida, 2012.
    [3] KRUEGER K R, LIPIŃSKI W, DAVIDSON J H. Operational performance of the University of Minnesota 45 kWe high-flux solar simulator[J]. Journal of Solar Energy Engineering, 2013, 135(4): 044501. doi: 10.1115/1.4023595
    [4] KRUEGER K R. Design and characterization of a concentrating solar simulator[D]. Minnesota: The University of Minnesota, 2012.
    [5] LI J, GONZALEZ-AGUILAR J, PÉREZ-RÁBAGO C, et al. Optical analysis of a hexagonal 42kWe high-flux solar simulator[J]. Energy Procedia, 2014, 57: 590-596. doi: 10.1016/j.egypro.2014.10.213
    [6] GILL R, BUSH E, HAUETER P, et al. Characterization of a 6 kW high-flux solar simulator with an array of xenon arc lamps capable of concentrations of nearly 5000 suns[J]. Review of Scientific Instruments, 2015, 86(12): 125107. doi: 10.1063/1.4936976
    [7] XU J L, TANG CH, CHENG Y P, et al. Design, construction, and characterization of an adjustable 70 kW high-flux solar simulator[J]. Journal of Solar Energy Engineering, 2016, 138(4): 041010. doi: 10.1115/1.4033498
    [8] LI X, CHEN J L, LIPIŃSKI W, et al. A 28 kWe multi-source high-flux solar simulator: design, characterization, and modeling[J]. Solar Energy, 2020, 211: 569-583. doi: 10.1016/j.solener.2020.09.089
    [9] ZHU Q B, XUAN Y M, LIU X L, et al. A 130 kWe solar simulator with tunable ultra-high flux and characterization using direct multiple lamps mapping[J]. Applied Energy, 2020, 270: 115165. doi: 10.1016/j.apenergy.2020.115165
    [10] LEVÊQUE G, BADER R, LIPIŃSKI W, et al. Experimental and numerical characterization of a new 45 kWel multisource high-flux solar simulator[J]. Optics Express, 2016, 24(22): A1360-A1373. doi: 10.1364/OE.24.0A1360
    [11] KUHN P, HUNT A. A new solar simulator to study high temperature solid-state reactions with highly concentrated radiation[J]. Solar Energy Materials, 1991, 24(1-2): 742-750.
    [12] WANG W J, AICHMAYER L, GARRIDO J, et al. Development of a Fresnel lens based high-flux solar simulator[J]. Solar Energy, 2017, 144: 436-444. doi: 10.1016/j.solener.2017.01.050
    [13] ABUSEADA M, OPHOFF C, OZALP N. Characterization of a new 10 kWe high flux solar simulator via indirect radiation mapping technique[J]. Journal of Solar Energy Engineering, 2019, 141(2): 021005. doi: 10.1115/1.4042246
    [14] DU SH, XIA T, HE Y L, et al. Experiment and optimization study on the radial graded porous volumetric solar receiver matching non-uniform solar flux distribution[J]. Applied Energy, 2020, 275: 115343. doi: 10.1016/j.apenergy.2020.115343
    [15] 郑翔远, 叶新, 罗志涛, 等. 高精度辐射热流计的不确定度分析与评价[J]. 中国光学(中英文),2022,15(4):780-788. doi: 10.37188/CO.2022-0023

    ZHENG X Y, YE X, LUO ZH T, et al. Uncertainty analysis and evaluation of a high-precision radiative heat-flux meter[J]. Chinese Optics, 2022, 15(4): 780-788. (in Chinese) doi: 10.37188/CO.2022-0023
    [16] XIAO J, YANG H Q, WEI X D, et al. A novel flux mapping system for high-flux solar simulators based on the indirect method[J]. Solar Energy, 2019, 179: 89-98. doi: 10.1016/j.solener.2018.12.034
    [17] LI Q, WANG J K, QIU Y, et al. A modified indirect flux mapping system for high-flux solar simulators[J]. Energy, 2021, 235: 121311. doi: 10.1016/j.energy.2021.121311
    [18] 朱锦鹏, 马壮, 高丽红, 等. 基于等离子喷涂的反射型激光防护涂层研究[J]. 中国光学,2017,10(5):578-587. doi: 10.3788/co.20171005.0578

    ZHU J P, MA ZH, GAO L H, et al. Reflective laser protective coating based on plasma spraying[J]. Chinese Optics, 2017, 10(5): 578-587. (in Chinese) doi: 10.3788/co.20171005.0578
    [19] BALLESTRÍN J, ESTRADA C A, RODRÍGUEZ-ALONSO M, et al. Heat flux sensors: calorimeters or radiometers?[J]. Solar Energy, 2006, 80(10): 1314-1320. doi: 10.1016/j.solener.2006.03.005
    [20] 任兰旭, 魏秀东, 牛文达, 等. 非共轴椭球面聚光阵列式高焦比太阳模拟器[J]. 光学学报,2012,32(10):1022002. doi: 10.3788/AOS201232.1022002

    REN L X, WEI X D, NIU W D, et al. A high flux solar simulator based on an array of non-coaxial ellipsoidal reflector[J]. Acta Optica Sinica, 2012, 32(10): 1022002. (in Chinese) doi: 10.3788/AOS201232.1022002
    [21] 魏素, 肖君, 魏秀东, 等. 太阳能聚焦光斑能流密度测量方法评估[J]. 中国光学,2016,9(2):255-262. doi: 10.3788/co.20160902.0255

    WEI S, XIAO J, WEI X D, et al. Evaluation of flux density measurement method for concentrated solar irradiance[J]. Chinese Optics, 2016, 9(2): 255-262. (in Chinese) doi: 10.3788/co.20160902.0255
    [22] DAI SH M, CHANG ZH SH, MA T Z, et al. Experimental study on flux mapping for a novel 84 kWe high flux solar simulator[J]. Applied Thermal Engineering, 2019, 162: 114319. doi: 10.1016/j.applthermaleng.2019.114319
    [23] 高庆华, 郄殿福. 热流测量技术发展综述[J]. 航天器环境工程,2020,37(3):218-227. doi: 10.12126/see.2020.03.002

    GAO Q H, QIE D F. The development of heat flux measurement technology[J]. Spacecraft Environment Engineering, 2020, 37(3): 218-227. (in Chinese) doi: 10.12126/see.2020.03.002
  • 加载中
图(9)
计量
  • 文章访问数:  448
  • HTML全文浏览量:  212
  • PDF下载量:  258
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-21
  • 修回日期:  2022-07-05
  • 网络出版日期:  2022-10-25

目录

    /

    返回文章
    返回