留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

拉曼激光雷达大气温湿压探测技术研究进展

刘东 姚清睿 张思诺 高佳欣 王南朝 吴疆 刘崇

刘东, 姚清睿, 张思诺, 高佳欣, 王南朝, 吴疆, 刘崇. 拉曼激光雷达大气温湿压探测技术研究进展[J]. 中国光学(中英文), 2023, 16(2): 243-257. doi: 10.37188/CO.2022-0145
引用本文: 刘东, 姚清睿, 张思诺, 高佳欣, 王南朝, 吴疆, 刘崇. 拉曼激光雷达大气温湿压探测技术研究进展[J]. 中国光学(中英文), 2023, 16(2): 243-257. doi: 10.37188/CO.2022-0145
LIU Dong, YAO Qing-rui, ZHANG Si-nuo, GAO Jia-xin, WANG Nan-chao, WU Jiang, LIU Chong. Research progress of temperature, humidity and pressure detection technology using raman lidar[J]. Chinese Optics, 2023, 16(2): 243-257. doi: 10.37188/CO.2022-0145
Citation: LIU Dong, YAO Qing-rui, ZHANG Si-nuo, GAO Jia-xin, WANG Nan-chao, WU Jiang, LIU Chong. Research progress of temperature, humidity and pressure detection technology using raman lidar[J]. Chinese Optics, 2023, 16(2): 243-257. doi: 10.37188/CO.2022-0145

拉曼激光雷达大气温湿压探测技术研究进展

基金项目: 浙江省自然科学基金杰出青年项目(No. LR19D050001);国家重点研发计划(No. 2021YFC2202001);中央高校基本科研业务费专项资金(No. 2021XZZX019);现代光学仪器国家重点实验室创新项目(No. MOI2021ZD01)
详细信息
    作者简介:

    刘 东(1982—),男,辽宁大连人,博士,教授,博士生导师,2005 年、2010 年在浙江大学分别获得学士、博士学位,主要从事于环境激光雷达(大气、海洋及星载)、机器视觉与深度学习、光电干涉检测等研究。E-mail:Liudongopt@zju.edu.cn

    姚清睿(2001—),女,安徽合肥人,主要从事大气激光雷达领域研究。E-mail:3190104988@zju. edu.cn

  • 中图分类号: P41

Research progress of temperature, humidity and pressure detection technology using raman lidar

Funds: Supported by Excellent Young Scientist Program of Zhejiang Provincial Natural Science Foundation of China (No. LR19D050001); National Key Research and Development Program of China (No. 2021YFC2202001); Fundamental Research Funds for the Central Universities (No. 2021XZZX019); State Key Laboratory of Modern Optical Instrumentation Innovation Program (No. MOI2021ZD01)
  • 摘要:

    温度、湿度、压强是3个重要的大气参数。快速、准确地了解大气的温度、湿度和压强信息及其变化趋势,对天气、气候、人工影响天气等研究有重要意义。拉曼激光雷达通过分离拉曼散射信号反演得到各种大气环境相关参数,可实现对大气参数廓线信息的高精度探测,在大气温湿压探测中独具优势与潜力。本文介绍了拉曼激光雷达对大气温度、湿度和压强的探测原理与反演方法,着重介绍了拉曼激光雷达中滤光片、标准具、光栅等常用分光器件的优缺点及其进展,以及拉曼激光雷达中涉及到的探测技术。最后例举了利用拉曼激光雷达对气象参数测量的典型应用。

     

  • 图 1  拉曼散射原子层面原理示意

    Figure 1.  Schematic diagram of Raman scattering principle

    图 2  激光雷达结构示意系统

    Figure 2.  Structure schematic of laser radar system

    图 3  多光束干涉原理示意图

    Figure 3.  Schematic diagram of multiple-beam interference principle

    图 4  多色仪示意图。OF,光纤;L1–L5,透镜;IF1a–IF4,干涉滤光片;ND,中性密度衰减器;PMT1–PMT4,分别用于检测弹性、低和高量子数转动拉曼和N2振动转动拉曼信号的光电倍增管[24]

    Figure 4.  Schematic diagram of polychromator. OF, optical fiber; L1–L5 ,lenses; IF1a–IF4,interference filters; ND, neutral density attenuator; PMT1–PMT4, photomultiplier tubes for detection of the elastic, low- and high-quantum-number rotational Raman and N2 vibrational–rotational Raman signals, respectively[24]

    图 5  转动拉曼激光雷达分光和滤波光路。OF,光纤;L,透镜;IF1a–IF2,干涉滤光片;ND,中性密度衰减器;PMT,光电倍增管[29]

    Figure 5.  Splitting and filtering optical path of rotating Raman lidar. OF, optical fiber; L, Lens; IF1a-IF2, interference filter; Nd, neutral density attenuator; PMT photomultiplier[29]

    图 6  Fabry-Perot标准具简图。S1,光源;L1-L2,透镜;G1-G2,平行玻璃板;S2,光屏

    Figure 6.  Schematic diagram of Fabry-Perot interferometer. S1, light source; L1-L2, lens; G1-G2, parallel glass plate; S2, light screen

    图 7  武汉大学用于测量大气温度和气溶胶光学特性的单线提取转动拉曼激光雷达的光学布局。BS,分束器;L,透镜;IF,干涉滤光片;FPI,Fabry-Perot标准具;PMT,光电倍增管[35]

    Figure 7.  Optical layout of single-line-extracted PRR lidar proposed by Wuhan University for measuring atmospheric temperature and aerosol optical properties. BS, beam splitter; L, lens; IF, interference filter; FPI, Fabry-Perot interferometer; PMT, photo-multiplier tube[35]

    图 8  光栅结构原理示意图。i$ \theta $分别是入射角和反射角,d为光栅常数

    Figure 8.  Schematic diagram of grating structure. i$ \theta $ are incident and reflection angles, respectively. d is the grating constant

    图 9  双衍射光栅单色仪结构。PMT为光电倍增管[39]

    Figure 9.  Double diffraction grating monochromator structure. PMT, photomultiplier tube[39]

    图 10  北京理工大学自主设计的双光栅单色仪示意图。左侧为两个发光光栅,在532 nm波段以利特罗条件入射[44]

    Figure 10.  Schematic diagram of the double grating monochromator independently designed by the Beijing Institute of Technology. Two luminous gratings on the left working in the band of 532 nm under the Elitro incident condition[44]

    图 11  全光纤分光系统。FC01,光纤耦合器;FBG,布拉格光栅;信号输出S_R12,S_R21至光电检测器[50]

    Figure 11.  All-fiber splitter system. FC01, fiber coupler; FBG, Bragg grating; signal output S_R12, S_R21 to photoelectric detector[50]

    图 12  由SFBG和FBG多级级联构成的高抑制率全光纤拉曼光谱分光光路示意图[52]

    Figure 12.  Schematic diagram of the Raman spectroscopic optical path of the all-fiber with a high suppression rate composed of SFBG and FBG cascades[52]

    表  1  PMT 和APD性能比较

    Table  1.   Performance comparison of PMT and APD

    PMTAPD
    工作波段适用于紫外到近红外波段,响应光谱范围为200~900 nm适用于红外波段,响应光谱范围为400~1650 nm
    增益104~107102~103
    量子效率20%~25%线性模式下可以达到80%,而盖革模式下可以达到40%~50%.
    脉冲上升时间~1 nsSi:0.1~2 ns
    Ge:0.5~0.8 ns
    InGaAs:0.1~0.5 ns
    抗磁场性
    下载: 导出CSV

    表  2  MCP-PMT和SiPM性能比较

    Table  2.   Performance comparison of MCP-PMT and SiPM

    MCP-PMTSiPM
    工作波段从真空紫外到近红外波段4000~1100 nm
    增益105~106105~106
    量子效率20%~25%25%~70%
    上升时间200~800 ps~1 ns
    抗磁场性良好
    下载: 导出CSV
  • [1] 狄慧鸽, 王建宇, 赵煊, 等. 转动/振动拉曼激光雷达探测大气压力廓线的方法研究[J]. 光学学报,2020,40(15):1501001. doi: 10.3788/AOS202040.1501001

    DI H G, WANG J Y, ZHAO X, et al. Method for detecting atmospheric pressure profile using rotational and vibrational raman lidar[J]. Acta Optica Sinica, 2020, 40(15): 1501001. (in Chinese) doi: 10.3788/AOS202040.1501001
    [2] 王衍明. 大气物理学[M]. 青岛: 青岛海洋大学出版社, 1993.

    WANG Y M. Atmospheric Physics[M]. Qingdao: China Ocean University Press, 1993. (in Chinese)
    [3] GOLDSMITH E J, BLAIR F H, BISSON S E, et al. Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols[J]. Applied Optics, 1998, 37(21): 4979-4990. doi: 10.1364/AO.37.004979
    [4] 唐杰. 大气温湿度探测拉曼激光雷达的研究[D]. 西安: 西安理工大学, 2012.

    TANG J. Research on raman lidar for atmospheric temperature and humidity profiles[D]. Xi'an: Xi'an University of Technology, 2012. (in Chinese)
    [5] 王青梅, 张以谟. 气象激光雷达的发展现状[J]. 气象科技,2006,34(3):246-249. doi: 10.3969/j.issn.1671-6345.2006.03.002

    WANG Q M, ZHANG Y M. Development of meteorological lidar[J]. Meteorological Science and Technology, 2006, 34(3): 246-249. (in Chinese) doi: 10.3969/j.issn.1671-6345.2006.03.002
    [6] 王刚, 王仕璠. 大气温度的激光雷达实测方法[J]. 激光杂志,2004,25(2):52-54. doi: 10.3969/j.issn.0253-2743.2004.02.020

    WANG G, WANG SH F. A measuring method of atmosphere temperature by lidar[J]. Laser Journal, 2004, 25(2): 52-54. (in Chinese) doi: 10.3969/j.issn.0253-2743.2004.02.020
    [7] HUA D X, UCHIDA M, KOBAYASHI T. Ultraviolet high-spectral-resolution rayleigh–Mie lidar with a dual-pass fabry–perot etalon for measuring atmospheric temperature profiles of the troposphere[J]. Optics Letters, 2004, 29(10): 1063-1065. doi: 10.1364/OL.29.001063
    [8] 华灯鑫, 宋小全. 先进激光雷达探测技术研究进展[J]. 红外与激光工程,2008,37(S3):21-27.

    HUA D X, SONG X Q. Advances in lidar remote sensing techniques[J]. Infrared and Laser Engineering, 2008, 37(S3): 21-27. (in Chinese)
    [9] 刘君, 华灯鑫, 李言. 大气边界层白天温度测量用转动拉曼激光雷达[J]. 光学学报,2007,27(5):755-759. doi: 10.3321/j.issn:0253-2239.2007.05.001

    LIU J, HUA D X, LI Y. Rotational raman lidar for daytime-temperature profiling of the atmospheric boundary layer[J]. Acta Optica Sinica, 2007, 27(5): 755-759. (in Chinese) doi: 10.3321/j.issn:0253-2239.2007.05.001
    [10] 戴昌达. 遥感图像应用处理与分析[M]. 北京: 清华大学出版社, 2004.

    DAI CH D. Remote Sensing Image Application Processing and Analysis[M]. Beijing: Tsinghua University Press, 2004. (in Chinese)
    [11] 宋小全. 先进激光雷达探测技术研究进展[J]. 中国人才,2008(18).

    SONG X Q. Research progress of advanced lidar detection Technology[J]. Chinese Talent, 2008(18). (in Chinese)
    [12] 宋正方. 应用大气光学基础[M]. 北京: 气象出版社, 1990.

    SONG ZH F. Fundamentals of Applied Atmospheric Optics[M]. Beijing: China Meteorological Press, 1990. (in Chinese)
    [13] 朱自莹, 顾仁敖, 陆天虹. 拉曼光谱在化学中的应用[M]. 沈阳: 东北大学出版社, 1998.

    ZHU Z Y, GU R A, LU T H. Application of Raman Spectroscopy in Chemistry[M]. Shenyang: Northeastern University Press, 1998. (in Chinese)
    [14] 尚震, 谢晨波, 王邦新, 等. 纯转动拉曼激光雷达探测北京地区近地面大气温度[J]. 红外与激光工程,2017,46(10):119-126.

    SHANG ZH, XIE CH B, WANG B X, et al.. Pure rotational Raman lidar measurements of atmospheric temperature near ground in Beijing[J]. Infrared and Laser Engineering, 2017, 46(10): 119-126. (in Chinese)
    [15] 翁淼. 纯转动拉曼单支谱激光雷达的研制及全天时大气温度和气溶胶参数测量[D]. 武汉: 武汉大学, 2018.

    WENG M. Single-line-extracted pure rotational raman lidar to measure atmospheric temperature and aerosol profiles[D]. Wuhan: Wuhan University, 2018. (in Chinese)
    [16] 田晓敏, 刘东, 徐继伟, 等. 大气探测激光雷达技术综述[J]. 大气与环境光学学报,2018,13(5):321-341.

    TIAN X M, LIU D, XU J W, et al. Review of lidar technology for atmosphere monitoring[J]. Journal of Atmospheric and Environmental Optics, 2018, 13(5): 321-341. (in Chinese)
    [17] WHITEMAN D N, MELFI S H, FERRARE R A. Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere[J]. Applied Optics, 1992, 31(16): 3068-3082. doi: 10.1364/AO.31.003068
    [18] 邓迁. 拉曼激光雷达水汽探测自标定方法研究与全固态系统研制[D]. 合肥: 中国科学技术大学, 2019.

    DENG Q. Research on self-calibration method of Raman lidar water vapor detection and development of all-solid-state system[D]. Hefei: University of Science and Technology of China, 2019. (in Chinese)
    [19] 吴敏. 大气温度探测拉曼散射激光雷达的关键技术研究[D]. 西安: 西安理工大学, 2008.

    WU M. Key technigue study on rotational raman lidar for atmospheric temperature profiles[D]. Xi'an: Xi'an University of Technology, 2008. (in Chinese)
    [20] BALSIGER F, HARIS P A T, PHILBRICK C R. Lower tropospheric temperature measurement using a rotational Raman lidar[J]. Proceedings of SPIE, 1996, 2832: 53-60. doi: 10.1117/12.258886
    [21] LI SH CH, HUA D X, HU L L, et al. All-fiber spectroscope with second-order fiber bragg grating for rotational Raman lidar[J]. Spectroscopy Letters, 2014, 47(3): 244-252. doi: 10.1080/00387010.2013.795173
    [22] 李启蒙, 李仕春, 秦宇丽, 等. 绝对测温转动拉曼激光雷达分光系统设计及性能[J]. 物理学报,2018,67(1):014207. doi: 10.7498/aps.67.20171834

    LI Q M, LI SH C, QIN Y L, et al. Design and performance of spectroscopic filter of rotational Raman temperature lidar for absolute measurement[J]. Acta Physica Sinica, 2018, 67(1): 014207. (in Chinese) doi: 10.7498/aps.67.20171834
    [23] NEDELJKOVIC D, HAUCHECORNE A, CHANIN M L. Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km[J]. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31(1): 90-101. doi: 10.1109/36.210448
    [24] BEHRENDT A, REICHARDT J. Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator[J]. Applied Optics, 2000, 39(9): 1372-1378. doi: 10.1364/AO.39.001372
    [25] BEHRENDT A, NAKAMURA T, TSUDA T. Combined temperature lidar for measurements in the troposphere, stratosphere, and mesosphere[J]. Applied Optics, 2004, 43(14): 2930-2939. doi: 10.1364/AO.43.002930
    [26] ACHTERT P, KHAPLANOV M, KHOSRAWI F, et al. Pure rotational-Raman channels of the Esrange lidar for temperature and particle extinction measurements in the troposphere and lower stratosphere[J]. Atmospheric Measurement Techniques, 2013, 6(1): 91-98. doi: 10.5194/amt-6-91-2013
    [27] BEHRENDT A, WULFMEYER V, HAMMANN E, et al. Profiles of second- to fourth-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with rotational Raman lidar[J]. Atmospheric Chemistry and Physics, 2015, 15(10): 5485-5500. doi: 10.5194/acp-15-5485-2015
    [28] YABUKI M, KAWANO Y, TOTTORI Y, et al. A Raman lidar with a deep ultraviolet laser for continuous water vapor profiling in the atmospheric boundary layer[J]. EPJ Web of Conferences, 2020, 237: 03001. doi: 10.1051/epjconf/202023703001
    [29] LI L Y, SONG SH L, LI F Q, et al. High-precision measurements of lower atmospheric temperature based on pure rotational Raman lidar[J]. Chinese Journal of Geophysics, 2015, 58(4): 313-324. doi: 10.1002/cjg2.20176
    [30] WANG Y F, FU Q, ZHAO M N, et al. A UV multifunctional Raman lidar system for the observation and analysis of atmospheric temperature, humidity, aerosols and their conveying characteristics over Xi'an[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 205: 114-126. doi: 10.1016/j.jqsrt.2017.10.001
    [31] ARSHINOV Y, BOBROVNIKOV S, SERIKOV I, et al. Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer[J]. Applied Optics, 2005, 44(17): 3593-3603. doi: 10.1364/AO.44.003593
    [32] BUTCHER R J, WILLETTS D V, JONES W J. On the use of a fabry-perot etalon for the determination of rotational constants of simple molecules-the pure rotational raman spectra of oxygen and nitrogen[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences, 1971, 324(1557): 231-245.
    [33] ARSHINOV Y, BOBROVNIKOV S. Use of a fabry–perot interferometer to isolate pure rotational Raman spectra of diatomic molecules[J]. Applied Optics, 1999, 38(21): 4635-4638. doi: 10.1364/AO.38.004635
    [34] HAUCHECORNE A, KECKHUT P, MARISCAL J F, et al. An innovative rotational Raman lidar to measure the temperature profile from the surface to 30 km altitude[J]. EPJ Web of Conferences, 2016, 119: 06008. doi: 10.1051/epjconf/201611906008
    [35] WENG M, YI F, LIU F CH, et al. Single-line-extracted pure rotational Raman lidar to measure atmospheric temperature and aerosol profiles[J]. Optics Express, 2018, 26(21): 27555-27571. doi: 10.1364/OE.26.027555
    [36] 赵凯华, 钟锡华. 光学(上下)[M]. 北京: 北京大学出版社, 1984.

    ZHAO K H, ZHONG X H. Optics (up, down)[M]. Beijing: Peking University Press, 1984. (in Chinese)
    [37] 秦胜光. 大气激光雷达光栅分光接收技术实验研究[D]. 青岛: 中国海洋大学, 2012.

    QIN SH G. The grating receiver technology experiment research of atmosphere lidar[D]. Qingdao: Ocean University of China, 2012. (in Chinese)
    [38] ARSHINOV Y F, BOBROVNIKOV S M, ZUEV V E, et al. Atmospheric temperature measurements using a pure rotational Raman lidar[J]. Applied Optics, 1983, 22(19): 2984-2990. doi: 10.1364/AO.22.002984
    [39] ANSMANN A, ARSHINOV Y, BOBROVNIKOV S M, et al. Double-grating monochromator for a pure rotational Raman lidar[J]. Proceedings of SPIE, 1999, 3583: 491-497. doi: 10.1117/12.337058
    [40] KIM D Y, CHA H K, LEE J M, et al. Pure rotational Raman lidar for atmospheric temperature measurements[J]. Journal of the Korean Physical Society, 2001, 39(5): 838-841.
    [41] BALIN I, SERIKOV I, BOBROVNIKOV S, et al. Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational-pure-rotational Raman lidar[J]. Applied Physics B, 2004, 79(6): 775-782. doi: 10.1007/s00340-004-1631-2
    [42] 刘玉丽, 张寅超, 苏嘉, 等. 转动拉曼测温激光雷达的双光栅单色仪研究[J]. 大气与环境光学学报,2007,2(3):188-193. doi: 10.3969/j.issn.1673-6141.2007.03.006

    LIU Y L, ZHANG Y CH, SU J, et al. Double grating monochromator for a atmospheric temperature measurement pure rotational raman-lidar[J]. Journal of Atmospheric and Environmental Optics, 2007, 2(3): 188-193. (in Chinese) doi: 10.3969/j.issn.1673-6141.2007.03.006
    [43] 刘玉丽, 张寅超, 苏嘉, 等. 探测低空大气温度分布的转动拉曼激光雷达[J]. 光电工程,2006,33(10):43-48.

    LIU Y L, ZHANG Y CH, SU J, et al. Rotational Raman lidar for atmospheric temperature profiles measurements in the lower-air[J]. Opto-Electronic Engineering, 2006, 33(10): 43-48. (in Chinese)
    [44] CHEN S Y, QIU Z J, ZHANG Y CH, et al. A pure rotational Raman lidar using double-grating monochromator for temperature profile detection[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112(2): 304-309. doi: 10.1016/j.jqsrt.2010.07.002
    [45] JIA J Y, YI F. Atmospheric temperature measurements at altitudes of 5-30 km with a double-grating-based pure rotational Raman lidar[J]. Applied Optics, 2014, 53(24): 5330-5343. doi: 10.1364/AO.53.005330
    [46] HAO W L, ZHEN SH L, CAO ZH G, et al. A fiber Bragg grating interrogating dynamic strains sensor system based on interference of polarized mode[J]. Chinese Journal of Quantum Electronics, 2012, 29(4): 507-512.
    [47] HILL K O. Photosensitivity in optical fiber waveguides: from discovery to commercialization[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(6): 1186-1189. doi: 10.1109/2944.902166
    [48] LI SH CH, HUA D X, SONG Y H, et al. Research on micro-lens coupling system of all-fiber Raman lidar[J]. Acta Optica Sinica, 2011, 31(6): 8-13.
    [49] 毛建东, 华灯鑫, 胡辽林, 等. 全光纤拉曼测温激光雷达分光系统设计[J]. 光学学报,2010,30(1):7-13. doi: 10.3788/AOS20103001.0007

    MAO J D, HUA D X, HU L L, et al. Design of spectroscopic filter of all-fiber rotational raman lidar for temperature profiling[J]. Acta Optica Sinica, 2010, 30(1): 7-13. (in Chinese) doi: 10.3788/AOS20103001.0007
    [50] 李仕春, 华灯鑫, 宋跃辉, 等. 全光纤转动拉曼激光雷达的光纤光栅分光技术研究[J]. 量子电子学报,2013,30(1):110-115. doi: 10.3969/j.issn.1007-5461.2013.01.020

    LI SH CH, HUA D X, SONG Y H, et al. Research on spectroscopic technique of fiber Bragg grating for all-fiber rotational Raman lidar[J]. Chinese Journal of Quantum Electronics, 2013, 30(1): 110-115. (in Chinese) doi: 10.3969/j.issn.1007-5461.2013.01.020
    [51] 李仕春, 王大龙, 李启蒙, 等. 绝对探测大气温度的纯转动拉曼激光雷达系统?[J]. 物理学报,2016,65(14):143301. doi: 10.7498/aps.65.143301

    LI SH C, WANG D L, LI Q M, et al. Pure rotational Raman lidar for absolute detection of atmospheric temperature[J]. Acta Physica Sinica, 2016, 65(14): 143301. (in Chinese) doi: 10.7498/aps.65.143301
    [52] 巩鑫, 华灯鑫, 李仕春, 等. 基于取样光纤布拉格光栅的全光纤拉曼测温分光系统设计及优化[J]. 物理学报,2016,65(7):073601. doi: 10.7498/aps.65.073601

    GONG X, HUA D X, LI SH CH, et al. Design and optimization of all-fiber rotational Raman spectroscope for temperature measurement based on sampled fiber Bragg grating[J]. Acta Physica Sinica, 2016, 65(7): 073601. (in Chinese) doi: 10.7498/aps.65.073601
    [53] MI Q SH, ZHU H N, GAO X R, et al. An apodized optimization methods for phase shift sampled fiber Bragg grating[J]. Optik, 2015, 126(4): 432-435. doi: 10.1016/j.ijleo.2014.10.004
    [54] MA CH J, REN L R, QU E SH, et al. Modeling and testing of static pressure within an optical fiber cable spool using distributed fiber Bragg gratings[J]. Optics Communications, 2012, 285(24): 4949-4953. doi: 10.1016/j.optcom.2012.07.064
    [55] WEN K H, YAN L SH, PAN W, et al. Design of multi-channel optical code-division multiple-access encoders and decoders based on sampled fiber Bragg gratings[J]. Optik, 2011, 122(24): 2249-2251. doi: 10.1016/j.ijleo.2010.09.052
    [56] 陈兆东. 多通道时间相关单光子计数技术的研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    CHEN ZH D. Study on multi-channel time-correlated single photon counting technique[D]. Harbin: Harbin Institute of Technology, 2013. (in Chinese)
    [57] 李维勇. 单光子计数系统研究[D]. 武汉: 华中科技大学, 2007.

    LI W Y. Research on single-photon-counter system[D]. Wuhan: Huazhong University of Science and Technology, 2007. (in Chinese)
    [58] BROWN R G W, JONES R, RARITY J G, et al. Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active quenching[J]. Applied Optics, 1987, 26(12): 2383-2389. doi: 10.1364/AO.26.002383
    [59] 付毅宾. 激光雷达信号获取关键技术研究[D]. 北京: 中国科学院大学, 2015.

    FU Y B. Research on key technologies of lidar signal acquisition[D]. Beijing: University of Chinese Academy of Sciences, 2015. (in Chinese)
    [60] 付毅宾, 王煜, 张天舒, 等. 模拟与光子计数融合的激光雷达信号采集系统设计[J]. 中国激光,2015,42(8):0814001. doi: 10.3788/CJL201542.0814001

    FU Y B, WANG Y, ZHANG T SH, et al. Signal acquisition system with simultaneous analog and photon counting measurement for lidar[J]. Chinese Journal of Lasers, 2015, 42(8): 0814001. (in Chinese) doi: 10.3788/CJL201542.0814001
    [61] 寇松峰. APD光子计数成像技术研究[D]. 南京: 南京理工大学, 2010.

    KOU S F. Research on photon counting image technology based on APD[D]. Nanjing: Nanjing University of Technology, 2010. (in Chinese)
    [62] 郭乐慧, 陈萍, 李立立, 等. 光电倍增管关键技术研究进展[J]. 真空电子技术,2020(4):1-13,27. doi: 10.16540/j.cnki.cn11-2485/tn.2020.04.01

    GUO L H, CHEN P, LI L L, et al. Research progress on key technologies of photomultiplier tubes[J]. Vacuum Electronics, 2020(4): 1-13,27. (in Chinese) doi: 10.16540/j.cnki.cn11-2485/tn.2020.04.01
    [63] ORLOV D A, GLAZENBORG R, ORTEGA R, et al. UV/visible high-sensitivity MCP-PMT single-photon GHz counting detector for long-range lidar instrumentations[J]. CEAS Space Journal, 2019, 11(4): 405-411. doi: 10.1007/s12567-019-00260-0
    [64] AGISHEV R, COMERÓN A, BACH J, et al. Lidar with SiPM: some capabilities and limitations in real environment[J]. Optics &Laser Technology, 2013, 49: 86-90.
    [65] 缪家鼎. 测量单个光子的真空雪崩光电二极管[J]. 光的世界,1994,12(3):14,19.

    MIAO J D. Vacuum avalanche photodiode for measuring single photon[J]. World of Light, 1994, 12(3): 14,19. (in Chinese)
    [66] GOLA A, ACERBI F, CAPASSO M, et al. NUV-sensitive silicon photomultiplier technologies developed at fondazione bruno kessler[J]. Sensors, 2019, 19(2): 308. doi: 10.3390/s19020308
    [67] 张云鹏. 激光雷达控制与数据采集系统的设计与实现[D]. 武汉: 武汉大学, 2014.

    ZHANG Y P. Design and implementation of control and data acquired systems for lidar systems[D]. Wuhan: Wuhan University, 2014. (in Chinese)
    [68] LI T, LEBLANC T, MCDERMID I S. Interannual variations of middle atmospheric temperature as measured by the JPL lidar at Mauna Loa Observatory, Hawaii (19.5°N, 155.6°W)[J]. Journal of Geophysical Research:Atmospheres, 2008, 113(D14): D14109. doi: 10.1029/2007JD009764
    [69] LIU F CH, WANG R, YI F, et al. Pure rotational Raman lidar for full-day troposphere temperature measurement at Zhongshan Station (69.37°S, 76.37°E), Antarctica[J]. Optics Express, 2021, 29(7): 10059-10076. doi: 10.1364/OE.418926
    [70] TOTEMS J, CHAZETTE P, SHANG X X, et al. Water vapor measurements by mobile Raman lidar over the Mediterranean Sea in the framework of HyMeX: application to multi-platform validation of moisture profiles[J]. EPJ Web of Conferences, 2016, 119: 26006. doi: 10.1051/epjconf/201611926006
    [71] VÉRÈMES H, PAYEN G, KECKHUT P, et al. Validation of the water vapor profiles of the raman lidar at the maïdo observatory (Reunion Island) calibrated with global navigation satellite system integrated water vapor[J]. Atmosphere, 2019, 10(11): 713. doi: 10.3390/atmos10110713
    [72] KLANNER L, HÖVELER K, KHORDAKOVA D, et al. A powerful lidar system capable of 1 h measurements of water vapour in the troposphere and the lower stratosphere as well as the temperature in the upper stratosphere and mesosphere[J]. Atmospheric Measurement Techniques, 2021, 14(1): 531-555. doi: 10.5194/amt-14-531-2021
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  1519
  • HTML全文浏览量:  659
  • PDF下载量:  622
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-29
  • 修回日期:  2022-07-19
  • 网络出版日期:  2022-10-08

目录

    /

    返回文章
    返回