Imaging and detection method for static interferometric high-temperature temperature field
-
摘要:
为了实现航空航天发动机尾焰、燃烧、爆炸等高温温度场的非接触高精度测量,对静态干涉型高温温度场探测方法展开研究。首先,设计静态干涉型高温温度场探测系统,理论分析高温温度场测量原理,研究高温干涉信号强度最低点光程差与温度的关系;其次,针对常用温度范围及可见光面阵探测器的响应波段,设计静态干涉具Savart棱镜,结合一维扫描实现温度场成像;最后,设计光学系统,拟合获得干涉最弱光程差与温度的对应关系,并获得线性拟合公式,仿真验证温度场经过系统后到达面阵探测器的干涉信号图像。结果表明,该静态干涉型高温温度场探测方法可实现1000 K−3000 K温度的高精度探测,且在线性区域,温度测量分辨率为1.4 K,温度测量相对误差优于0.8%。本文研究为军民领域的高精度高温温度场成像提供参考。
Abstract:In order to realize the non-contact high-precision measurement of high-temperature temperature fields such as the tail flame, combustion and explosion of aerospace engines, a static interferometric high-temperature temperature field imaging and detection method is studied. Firstly, a static interference high-temperature temperature field detection system is designed. On the basis of theoretical analysis of the measurement principle of high-temperature temperature fields, the relationship between the optical path difference and the temperature at the lowest point of high-temperature interference signal intensity is studied. Secondly, according to the response band of the visible light area array detector and the common temperature range, a static interferometric Savart prism is designed, and temperature field imaging is realized by using it for one-dimensional scanning. Finally, the optical system is designed and the corresponding relationship between the minimum optical path difference of the interference and the temperature is obtained by fitting. From this, the linear fitting formula is obtained. Simulations are conducted to verify the interference signal image where the temperature field after passing through the system reaches the area detector. The static interferometric high-temperature temperature field detection method can achieve the high-precision detection of 1000 K−3000 K temperatures. In the linear region, the temperature measurement resolution is 1.4 K and the temperature measurement relative error is better than 0.8%. This research lays the foundation for high-precision high-temperature temperature field imaging in the military and civilian fields.
-
表 1 指标参数
Table 1. Index parameters
指标名称 参数值 测温范围 1000~3000 K 光程差范围 200~650 nm 面阵探测器分辨率 2472×2064 像元尺寸 2.74 μm×2.74 μm 等效焦距f2 45 mm 温度分辨率 1.4 K -
[1] 刘晶儒, 胡志云. 基于激光的测量技术在燃烧流场诊断中的应用[J]. 中国光学,2018,11(4):531-549. doi: 10.3788/co.20181104.0531LIU J R, HU ZH Y. Applications of measurement techniques based on lasers in combustion flow field diagnostics[J]. Chinese Optics, 2018, 11(4): 531-549. (in Chinese) doi: 10.3788/co.20181104.0531 [2] HAN J C. Fundamental gas turbine heat transfer[J]. Journal of Thermal Science and Engineering Applications, 2013, 5(2): 021007. doi: 10.1115/1.4023826 [3] MODEST M F, HAWORTH D C. Radiative Heat Transfer in Turbulent Combustion Systems: Theory and Applications[M]. New York: Springer, 2016. [4] POLIFKE W. Modeling and analysis of premixed flame dynamics by means of distributed time delays[J]. Progress in Energy and Combustion Science, 2020, 79: 100845. doi: 10.1016/j.pecs.2020.100845 [5] 李昂, 王秋林, 张晓林, 等. 民用飞机研制的高温测量应用分析[J]. 成都航空职业技术学院学报,2021,37(1):35-38. doi: 10.3969/j.issn.1671-4024.2021.01.012LI A, WANG Q L, ZHANG X L, et al. Application analysis of pyrometry in civil aircraft manufacturing[J]. Journal of Chengdu Aeronautic Polytechnic, 2021, 37(1): 35-38. (in Chinese) doi: 10.3969/j.issn.1671-4024.2021.01.012 [6] 贺宗琴. 表面温度测量[M]. 北京: 中国计量出版社, 2009.HE Z Q. Surface Temperature Measurement[M]. Beijing: China Metrology Press, 2009. (in Chinese) [7] MEKHRENGIN M V, MESHKOVSKII I K, TASHKINOV V A, et al. Multispectral pyrometer for high temperature measurements inside combustion chamber of gas turbine engines[J]. Measurement, 2019, 139: 355-360. doi: 10.1016/j.measurement.2019.02.084 [8] 李伟. 热电偶测温误差的来源与处理[C]. 第十八届中国航空测控技术年会论文集, 《测控技术》杂志社, 2021: 256-259.LI W. Sources and treatment of thermocouple temperature measurement error[C]. Proceedings of the 18th China Annual Conference on Aerial Measurement and Control Technology, Measurement and Control Technology Magazine, 2021: 256-259. [9] VON MOLL A, BEHBAHANI A R, FRALICK G C, et al. . A review of exhaust gas temperature sensing techniques for modern turbine engine controls[C]. Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA, 2014: 3977. [10] NI M J, ZHANG H D, WANG F, et al. Study on the detection of three-dimensional soot temperature and volume fraction fields of a laminar flame by multispectral imaging system[J]. Applied Thermal Engineering, 2016, 96: 421-431. doi: 10.1016/j.applthermaleng.2015.11.116 [11] 郑翔远, 叶新, 罗志涛, 等. 高精度辐射热流计的不确定度分析与评价[J]. 中国光学(中英文),2022,15(4):780-788. doi: 10.37188/CO.2022-0023ZHENG X Y, YE X, LUO ZH T, et al. Uncertainty analysis and evaluation of a high-precision radiative heat-flux meter[J]. Chinese Optics, 2022, 15(4): 780-788. (in Chinese) doi: 10.37188/CO.2022-0023 [12] 蔡红星, 胡馨月, 李昌立, 等. 强激光毁伤过程的热辐射谱测量[J]. 中国光学,2012,5(3):277-282.CAI H X, HU X Y, LI CH L, et al. Thermal radiation spectral measurement of intense laser damage[J]. Chinese Optics, 2012, 5(3): 277-282. (in Chinese) [13] MODEST M F, MAZUMDER S. Radiative Heat Transfer[M]. 4th ed. Amsterdam: Academic Press, 2021. [14] 吕金光, 梁静秋, 赵百轩, 等. 全景双谱段红外成像干涉光谱测量反演仪器[J]. 中国光学(中英文),2022,15(5):1092-1104. doi: 10.37188/CO.2022-0114LV J G, LIANG J Q, ZHAO B X, et al. Panoramic bispectral infrared imaging interference spectrum measurement inversion instrument[J]. Chinese Optics, 2022, 15(5): 1092-1104. (in Chinese) doi: 10.37188/CO.2022-0114 [15] 刘东, 姚清睿, 张思诺, 等. 拉曼激光雷达大气温湿压探测技术研究进展[J]. 中国光学(中英文), doi: 10.37188/CO.2022-0145.LIU D, YAO Q R, ZHANG S N, et al.. Research progress of raman lidar temperature and humidity pressure detection technology[J]. Chinese Optics, doi: 10.37188/CO.2022-0145. (in Chinese) [16] 莫苏新. 基于CCD的高温温度场测量方法研究[D]. 长春: 长春理工大学, 2020.MO S X. Research on high temperature field measurement method based on CCD[D]. Changchun: Changchun University of Science and Technology, 2020. (in Chinese)