留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静态干涉型高温温度场成像探测方法研究

张瑞 徐承雨 王志斌 唐维平 薛鹏 李孟委

张瑞, 徐承雨, 王志斌, 唐维平, 薛鹏, 李孟委. 静态干涉型高温温度场成像探测方法研究[J]. 中国光学(中英文), 2023, 16(4): 796-801. doi: 10.37188/CO.2022-0168
引用本文: 张瑞, 徐承雨, 王志斌, 唐维平, 薛鹏, 李孟委. 静态干涉型高温温度场成像探测方法研究[J]. 中国光学(中英文), 2023, 16(4): 796-801. doi: 10.37188/CO.2022-0168
ZHANG Rui, XU Cheng-yu, WANG Zhi-bin, TANG Wei-ping, XUE Peng, LI Meng-wei. Imaging and detection method for static interferometric high-temperature temperature field[J]. Chinese Optics, 2023, 16(4): 796-801. doi: 10.37188/CO.2022-0168
Citation: ZHANG Rui, XU Cheng-yu, WANG Zhi-bin, TANG Wei-ping, XUE Peng, LI Meng-wei. Imaging and detection method for static interferometric high-temperature temperature field[J]. Chinese Optics, 2023, 16(4): 796-801. doi: 10.37188/CO.2022-0168

静态干涉型高温温度场成像探测方法研究

doi: 10.37188/CO.2022-0168
基金项目: 国家自然科学基金(No. 62105302)
详细信息
    作者简介:

    张 瑞(1987—),男,山西长治人,博士,教授,2011年、2017年于中北大学分别获得物理学学位,信息与通信工程博士学位,主要研究方向包括光电探测、光谱(偏振)成像、光谱椭偏测量、压缩感知光电信息获取、光电目标识别、激光告警,先后主持国家自然基金项目、总装工程项目、总装测试仪器项目、总装预研项目、军委创新项目、山西省青年基金等8项。申请专利40多项,已授权15多项,发表高水平学术论文22篇,其中SCI收录10篇,EI收录6篇。E-mail:zhangrui@nuc.edu.cn

  • 中图分类号: TP394.1;TH691.9

Imaging and detection method for static interferometric high-temperature temperature field

Funds: Supported by National Natural Science Foundation of China (No. 62105302)
More Information
  • 摘要:

    为了实现航空航天发动机尾焰、燃烧、爆炸等高温温度场的非接触高精度测量,对静态干涉型高温温度场探测方法展开研究。首先,设计静态干涉型高温温度场探测系统,理论分析高温温度场测量原理,研究高温干涉信号强度最低点光程差与温度的关系;其次,针对常用温度范围及可见光面阵探测器的响应波段,设计静态干涉具Savart棱镜,结合一维扫描实现温度场成像;最后,设计光学系统,拟合获得干涉最弱光程差与温度的对应关系,并获得线性拟合公式,仿真验证温度场经过系统后到达面阵探测器的干涉信号图像。结果表明,该静态干涉型高温温度场探测方法可实现1000 K−3000 K温度的高精度探测,且在线性区域,温度测量分辨率为1.4 K,温度测量相对误差优于0.8%。本文研究为军民领域的高精度高温温度场成像提供参考。

     

  • 图 1  基于Savart棱镜的静态干涉型高温温度场探测原理图

    Figure 1.  Schematic diagram of static interference high-temperature temperature field detection based on a Savart prism

    图 2  Savart棱镜静态干涉温度场探测光路图

    Figure 2.  The optical path diagram of Savart prism static interference temperature field detection

    图 3  (a)不同温度高温黑体(或灰体)归一化干涉信号图;(b) 图 (a) 中圆圈区域局部放大图

    Figure 3.  (a) Normalized interference signal diagram of the high temperature black body (or gray body) at different temperatures; (b) enlarged drawing of the area marked in (a)

    图 4  干涉信号最低光程差ΔLmin与被测目标温度关系图

    Figure 4.  The relationship between the lowest optical path difference ΔLmin of the interference signal and the temperature of the measured target

    图 5  最低光程差ΔLmin与被测目标温度的关系及拟合误差

    Figure 5.  The relationship between lowest optical path difference ΔLmin and the measured target temperature and the fitting error

    图 6  高温温度场及面阵探测器获得的干涉图像

    Figure 6.  The high-temperature temperature field and the interference image obtained by the area array detector

    图 7  测量获得的温度与原来入射温度对比图

    Figure 7.  Comparison of the measured temperature and original incident temperature

    图 8  测量温度相对误差

    Figure 8.  Relative error of the measured temperature

    表  1  指标参数

    Table  1.   Index parameters

    指标名称参数值
    测温范围1000~3000 K
    光程差范围200~650 nm
    面阵探测器分辨率2472×2064
    像元尺寸2.74 μm×2.74 μm
    等效焦距f245 mm
    温度分辨率1.4 K
    下载: 导出CSV
  • [1] 刘晶儒, 胡志云. 基于激光的测量技术在燃烧流场诊断中的应用[J]. 中国光学,2018,11(4):531-549. doi: 10.3788/co.20181104.0531

    LIU J R, HU ZH Y. Applications of measurement techniques based on lasers in combustion flow field diagnostics[J]. Chinese Optics, 2018, 11(4): 531-549. (in Chinese) doi: 10.3788/co.20181104.0531
    [2] HAN J C. Fundamental gas turbine heat transfer[J]. Journal of Thermal Science and Engineering Applications, 2013, 5(2): 021007. doi: 10.1115/1.4023826
    [3] MODEST M F, HAWORTH D C. Radiative Heat Transfer in Turbulent Combustion Systems: Theory and Applications[M]. New York: Springer, 2016.
    [4] POLIFKE W. Modeling and analysis of premixed flame dynamics by means of distributed time delays[J]. Progress in Energy and Combustion Science, 2020, 79: 100845. doi: 10.1016/j.pecs.2020.100845
    [5] 李昂, 王秋林, 张晓林, 等. 民用飞机研制的高温测量应用分析[J]. 成都航空职业技术学院学报,2021,37(1):35-38. doi: 10.3969/j.issn.1671-4024.2021.01.012

    LI A, WANG Q L, ZHANG X L, et al. Application analysis of pyrometry in civil aircraft manufacturing[J]. Journal of Chengdu Aeronautic Polytechnic, 2021, 37(1): 35-38. (in Chinese) doi: 10.3969/j.issn.1671-4024.2021.01.012
    [6] 贺宗琴. 表面温度测量[M]. 北京: 中国计量出版社, 2009.

    HE Z Q. Surface Temperature Measurement[M]. Beijing: China Metrology Press, 2009. (in Chinese)
    [7] MEKHRENGIN M V, MESHKOVSKII I K, TASHKINOV V A, et al. Multispectral pyrometer for high temperature measurements inside combustion chamber of gas turbine engines[J]. Measurement, 2019, 139: 355-360. doi: 10.1016/j.measurement.2019.02.084
    [8] 李伟. 热电偶测温误差的来源与处理[C]. 第十八届中国航空测控技术年会论文集, 《测控技术》杂志社, 2021: 256-259.

    LI W. Sources and treatment of thermocouple temperature measurement error[C]. Proceedings of the 18th China Annual Conference on Aerial Measurement and Control Technology, Measurement and Control Technology Magazine, 2021: 256-259.
    [9] VON MOLL A, BEHBAHANI A R, FRALICK G C, et al. . A review of exhaust gas temperature sensing techniques for modern turbine engine controls[C]. Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA, 2014: 3977.
    [10] NI M J, ZHANG H D, WANG F, et al. Study on the detection of three-dimensional soot temperature and volume fraction fields of a laminar flame by multispectral imaging system[J]. Applied Thermal Engineering, 2016, 96: 421-431. doi: 10.1016/j.applthermaleng.2015.11.116
    [11] 郑翔远, 叶新, 罗志涛, 等. 高精度辐射热流计的不确定度分析与评价[J]. 中国光学(中英文),2022,15(4):780-788. doi: 10.37188/CO.2022-0023

    ZHENG X Y, YE X, LUO ZH T, et al. Uncertainty analysis and evaluation of a high-precision radiative heat-flux meter[J]. Chinese Optics, 2022, 15(4): 780-788. (in Chinese) doi: 10.37188/CO.2022-0023
    [12] 蔡红星, 胡馨月, 李昌立, 等. 强激光毁伤过程的热辐射谱测量[J]. 中国光学,2012,5(3):277-282.

    CAI H X, HU X Y, LI CH L, et al. Thermal radiation spectral measurement of intense laser damage[J]. Chinese Optics, 2012, 5(3): 277-282. (in Chinese)
    [13] MODEST M F, MAZUMDER S. Radiative Heat Transfer[M]. 4th ed. Amsterdam: Academic Press, 2021.
    [14] 吕金光, 梁静秋, 赵百轩, 等. 全景双谱段红外成像干涉光谱测量反演仪器[J]. 中国光学(中英文),2022,15(5):1092-1104. doi: 10.37188/CO.2022-0114

    LV J G, LIANG J Q, ZHAO B X, et al. Panoramic bispectral infrared imaging interference spectrum measurement inversion instrument[J]. Chinese Optics, 2022, 15(5): 1092-1104. (in Chinese) doi: 10.37188/CO.2022-0114
    [15] 刘东, 姚清睿, 张思诺, 等. 拉曼激光雷达大气温湿压探测技术研究进展[J]. 中国光学(中英文), doi: 10.37188/CO.2022-0145.

    LIU D, YAO Q R, ZHANG S N, et al.. Research progress of raman lidar temperature and humidity pressure detection technology[J]. Chinese Optics, doi: 10.37188/CO.2022-0145. (in Chinese)
    [16] 莫苏新. 基于CCD的高温温度场测量方法研究[D]. 长春: 长春理工大学, 2020.

    MO S X. Research on high temperature field measurement method based on CCD[D]. Changchun: Changchun University of Science and Technology, 2020. (in Chinese)
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  752
  • HTML全文浏览量:  165
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-22
  • 修回日期:  2022-08-24
  • 网络出版日期:  2023-02-06

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!