留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2-μm MOPA结构全光纤激光器输出特性研究

吴玲 娄岩 侯欣宜 李保群 李永亮 王天枢 赵义武

吴玲, 娄岩, 侯欣宜, 李保群, 李永亮, 王天枢, 赵义武. 2-μm MOPA结构全光纤激光器输出特性研究[J]. 中国光学(中英文), 2023, 16(2): 399-406. doi: 10.37188/CO.2022-0191
引用本文: 吴玲, 娄岩, 侯欣宜, 李保群, 李永亮, 王天枢, 赵义武. 2-μm MOPA结构全光纤激光器输出特性研究[J]. 中国光学(中英文), 2023, 16(2): 399-406. doi: 10.37188/CO.2022-0191
WU Ling, LOU Yan, HOU Xin-yi, LI Bao-qun, LI Yong-liang, WANG Tian-shu, ZHAO Yi-wu. Output characteristics of an all-fiber laser with a 2-μm MOPA structure[J]. Chinese Optics, 2023, 16(2): 399-406. doi: 10.37188/CO.2022-0191
Citation: WU Ling, LOU Yan, HOU Xin-yi, LI Bao-qun, LI Yong-liang, WANG Tian-shu, ZHAO Yi-wu. Output characteristics of an all-fiber laser with a 2-μm MOPA structure[J]. Chinese Optics, 2023, 16(2): 399-406. doi: 10.37188/CO.2022-0191

2-μm MOPA结构全光纤激光器输出特性研究

基金项目: 国家自然科学基金项目(No. 61975021);吉林省科技发展计划项目(No. 20220402014GH,No. 20200201185JC)
详细信息
    作者简介:

    吴 玲(1998—),女,河南南阳人,硕士研究生,2020年于河南师范大学获得学士学位,主要从事光纤激光器技术及其应用的研究。E-mail:2020100215@mails.cust.edu.cn

    娄 岩(1981—),女,吉林长春人,博士,副研究员,硕士生导师,2012年于长春理工大学获得博士学位,主要从事空间激光通信、激光应用等方面的研究。E-mail: lyan@cust.edu.cn

  • 中图分类号: TN248

Output characteristics of an all-fiber laser with a 2-μm MOPA structure

Funds: Supported by National Natural Science Foundation of China (No. 61975021); Science and Technology Development Program of Jilin Province (No. 20220402014GH, No. 20200201185JC)
More Information
  • 摘要:

    为改善高功率掺铥光纤激光器(TDFL)的输出性能,提高系统的光-光转化效率,研制了一种全光纤主振荡功率放大结构(MOPA)的高功率TDFL,可在连续(CW)和准连续(QCW)两种模式下工作。首先,搭建了激光振荡器,对种子源激光器的输出特性进行研究。接着,搭建掺铥光纤放大器,并将其与激光振荡器连接,研究MOPA结构光纤激光器的输出特性。最后,在QCW调制模式下,分析MOPA结构光纤激光器的脉冲特性。结果表明:激光振荡器实现了中心波长为1940 nm连续稳定的激光输出,最高平均输出功率为18.56 W,斜率效率为54.84%,且光谱无拉曼成分。利用该低功率连续激光作为种子源经过自制的掺铥光纤放大器后,平均输出功率可达66.9 W,斜率效率为48.48%。当系统在QCW模式下工作时,可以实现对频率和占空比的调节,且当频率为75 Hz,占空比为10%时,经计算其峰值功率为80.3 W。该研究方案对研制2 μm波段更高功率的MOPA激光器具有参考意义。

     

  • 图 1  2-μm高功率激光器示意图 。LD:激光二极管; CPS:包层功率剥离器;EFC:光纤激光输出头

    Figure 1.  Schematic diagram of 2-μm high power fiber laser. LD: laser diode; CPS: cladding power stripper; EFC: endcaped fiber cable

    图 2  2-μm高功率激光器种子源和放大级实物图

    Figure 2.  Physical diagrams of the seed source and amplification stage of the 2-μm high-power laser

    图 3  种子激光器光谱图

    Figure 3.  Spectrogram of the seed laser

    图 4  种子激光器输出特性图

    Figure 4.  Output characteristics of seed laser

    图 5  MOPA激光器在不同输出功率时的光谱

    Figure 5.  Spectram of MOPA laser at different output powers

    图 6  优化前后MOPA激光器输出特性图

    Figure 6.  Output characteristics of MOPA laser before and after optimization

    图 7  放大级开4个泵后,MOPA激光器的输出功率和转化效率随泵浦功率的变化

    Figure 7.  Output power and conversion efficiency of the MOPA laser versus the pump power after turning on 4 pumps in the amplified stage

    图 8  不同调制频率下,激光输出功率和占空比的关系

    Figure 8.  Laser output power versus the duty cycle under different modulation frequencies

    图 9  重复频率为50 Hz,脉冲宽度为1 ms的脉冲

    Figure 9.  Pulses with 50 Hz repetition rate and 1 ms pulse width

  • [1] 李鑫, 杨超, 李永亮. 2 μm高功率掺铥连续光纤激光器研究进展[J]. 激光杂志,2022,43(11):1-8. doi: 10.14016/j.cnki.jgzz.2022.11.001

    LI X, YANG CH, LI Y L. Research progress of 2 μm high-power thulium-doped CW fiber laser[J]. Laser Journal, 2022, 43(11): 1-8. (in Chinese) doi: 10.14016/j.cnki.jgzz.2022.11.001
    [2] MINGAREEV I, WEIRAUCH F, OLOWINSKY A, et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics &Laser Technology, 2012, 44(7): 2095-2099.
    [3] PAL A, SEN R, BREMER K, et al. "All-fiber" tunable laser in the 2 μm region, designed for CO2 detection[J]. Applied Optics, 2012, 51(29): 7011-7015. doi: 10.1364/AO.51.007011
    [4] 王思颖, 陈静, 刘小平. 2 μm激光治疗子宫内膜息肉的临床疗效[J]. 中国激光医学杂志,2020,29(6):368-370.

    WANG S Y, CHEN J, LIU X P. Clinical efficacy of 2 μm laser treatment for endometrial polyps[J]. Chinese Journal of Laser Medicine, 2020, 29(6): 368-370. (in Chinese)
    [5] WANG X, ZHOU P, ZHANG H W, et al. 100 W-level Tm-doped fiber laser pumped by 1173 nm Raman fiber lasers[J]. Optics Letters, 2014, 39(15): 4329-4332. doi: 10.1364/OL.39.004329
    [6] 胡韵箫. 中红外医用光纤激光的研制及其与生物组织作用的研究[D]. 成都: 电子科技大学, 2017.

    HU Y X. Development of mid-infrared medical fiber laser and research on interaction of the laser with biologic tissue[D]. Chengdu: University of Electronic Science and Technology of China, 2017. (in Chinese)
    [7] 刘敏, 高小峰. 铥光纤激光碎石基础研究和临床应用进展[J]. 中华泌尿外科杂志,2021,42(1):75-78. doi: 10.3760/cma.j.cn112330-20200907-00655

    LIU M, GAO X F. Advances in fundamental research and clinical application of Thulium fiber laser lithotripsy[J]. Chinese Journal of Urology, 2021, 42(1): 75-78. (in Chinese) doi: 10.3760/cma.j.cn112330-20200907-00655
    [8] RICHARDSON D J, NILSSON J, CLARKSON W A. High power fiber lasers: current status and future perspectives [Invited][J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92. doi: 10.1364/JOSAB.27.000B63
    [9] EHRENREICH T, LEVEILLE R, MAJID I, et al. 1-kW, all-glass Tm: fiber laser[J]. Proceedings of SPIE, 2010, 7580: 758016. doi: 10.1117/12.842404
    [10] LÜ H B, ZHOU P, ZHANG H W, et al. High-power all-fiberized thulium-doped fiber MOPA[J]. Laser Physics Letters, 2013, 10(12): 125101. doi: 10.1088/1612-2011/10/12/125101
    [11] TANG Y L, LI X H, WANG Q J. High-power passively Q-switched thulium fiber laser with distributed stimulated Brillouin scattering[J]. Optics Letters, 2013, 38(24): 5474-5477. doi: 10.1364/OL.38.005474
    [12] TANG Y L, LI X H, YAN ZH Y, et al. 50-W 2-μm nanosecond all-fiber-based thulium-doped fiber amplifier[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 3100707.
    [13] LI X H, YU X CH, SUN ZH P, et al. High-power graphene mode-locked Tm/Ho co-doped fiber laser with evanescent field interaction[J]. Scientific Reports, 2015, 5: 16624. doi: 10.1038/srep16624
    [14] YANG C, JU Y L, YAO B Q, et al. 140 W high power all-fiber laser at 1940 nm with narrow spectral line-width by MOPA configuration[J]. Applied Physics B, 2016, 122(8): 230. doi: 10.1007/s00340-016-6504-y
    [15] PAL D, SEN R, PAL A. Design of all-fiber thulium laser in CW and QCW mode of operation for medical use[J]. Physica Status Solidi C, 2017, 14(1-2): 1600127. doi: 10.1002/pssc.201600127
    [16] YAO W CH, SHAO ZH H, SHEN CH F, et al.. 400 W all-fiberized Tm-doped MOPA at 1941 nm with narrow spectral linewidth[C]. Proceedings of Advanced Solid State Lasers 2017, Optica Publishing Group, 2017: JTu2A. 33.
    [17] LIU X X, LI X H, TANG Y L, et al. PbS nanoparticles saturable absorber for ultrafast pulse generation in 2-µm fiber laser[J]. Optics Letters, 2020, 45(1): 161-164. doi: 10.1364/OL.45.000161
    [18] SHIN J S, CHA Y H, CHUN B J, et al. 200-W continuous-wave thulium-doped all-fiber laser at 2050 nm[J]. Current Optics and Photonics, 2021, 5(3): 306-310.
    [19] 施亚齐, 戴梦楠. 激光原理与技术[M]. 武汉: 华中科技大学出版社, 2012: 22-76.

    SHI Y Q, DAI M N. Laser Principles and Technology[M]. Wuhan: Huazhong University of Science & Technology Press, 2012: 22-76. (in Chinese)
    [20] AGRAWAL G P. Nonlinear Fiber Optics[M]. 5th ed. Amsterdam: Elsevier, 2013: 295-352.
    [21] PAL D, GHOSH A, SEN R, et al. Continuous-wave and quasi-continuous wave thulium-doped all-fiber laser: implementation on kidney stone fragmentations[J]. Applied Optics, 2016, 55(23): 6151-6155. doi: 10.1364/AO.55.006151
    [22] 韩文国, 延凤平, 冯亭, 等. 高功率掺铥光纤激光器及其在生物组织切割中的应用[J]. 发光学报,2021,42(5):708-716. doi: 10.37188/CJL.20210064

    HAN W G, YAN F P, FENG T, et al. High-power thulium-doped fiber laser and its application in biological tissue cutting[J]. Chinese Journal of Luminescence, 2021, 42(5): 708-716. (in Chinese) doi: 10.37188/CJL.20210064
    [23] 匡尚奇, 郭祥帅, 冯玉玲, 等. 半导体激光器系统输出混沌激光研究进展[J]. 中国光学,2021,14(5):1133-1145. doi: 10.37188/CO.2020-0216

    KUANG SH Q, GUO X SH, FENG Y L, et al. Research progress of optical chaos in semiconductor laser systems[J]. Chinese Optics, 2021, 14(5): 1133-1145. (in Chinese) doi: 10.37188/CO.2020-0216
    [24] 赵宏斌, 苏安, 尹向宝, 等. 石墨烯缺陷对光子晶体光吸收特性的调制[J]. 中国光学,2022,15(3):418-425. doi: 10.37188/CO.2021-0203

    ZHAO H B, SU A, YIN X B, et al. The modulation effect of graphene defects on the light absorption properties of photonic crystals[J]. Chinese Optics, 2022, 15(3): 418-425. (in Chinese) doi: 10.37188/CO.2021-0203
  • 加载中
图(9)
计量
  • 文章访问数:  1024
  • HTML全文浏览量:  388
  • PDF下载量:  301
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-01
  • 修回日期:  2022-09-28
  • 录用日期:  2022-11-25
  • 网络出版日期:  2022-12-24

目录

    /

    返回文章
    返回