留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical design and preparation of high performance MWiR notch filter

SHANG Peng CHEN Bei-xi SUN Peng LIU Hua-song BAI Jin-lin JI Yi-qin CAO Bo MA Yuan-fei LIN Quan

尚鹏, 陈蓓曦, 孙鹏, 刘华松, 白金林, 季一勤, 曹波, 马远飞, 林泉. 高性能中波红外陷波滤光片设计与研制[J]. 中国光学(中英文), 2023, 16(4): 904-915. doi: 10.37188/CO.2022-0193
引用本文: 尚鹏, 陈蓓曦, 孙鹏, 刘华松, 白金林, 季一勤, 曹波, 马远飞, 林泉. 高性能中波红外陷波滤光片设计与研制[J]. 中国光学(中英文), 2023, 16(4): 904-915. doi: 10.37188/CO.2022-0193
SHANG Peng, CHEN Bei-xi, SUN Peng, LIU Hua-song, BAI Jin-lin, JI Yi-qin, CAO Bo, MA Yuan-fei, LIN Quan. Theoretical design and preparation of high performance MWiR notch filter[J]. Chinese Optics, 2023, 16(4): 904-915. doi: 10.37188/CO.2022-0193
Citation: SHANG Peng, CHEN Bei-xi, SUN Peng, LIU Hua-song, BAI Jin-lin, JI Yi-qin, CAO Bo, MA Yuan-fei, LIN Quan. Theoretical design and preparation of high performance MWiR notch filter[J]. Chinese Optics, 2023, 16(4): 904-915. doi: 10.37188/CO.2022-0193

高性能中波红外陷波滤光片设计与研制

详细信息
  • 中图分类号: O484

Theoretical design and preparation of high performance MWiR notch filter

doi: 10.37188/CO.2022-0193
Funds: Supported by the National Natural Science Foundation of China (No. 61905179); Natural Science Foundation of Hebei Province (No. F2022103002); Key R & D Projects of Hebei Province (No. 22351101D)
More Information
    Author Bio:

    Shang Peng (1986—), male, Heze city, Shandong province, Ph.D., Senior Engineer. He received his Ph.D. degree from the University of Chinese Academy of Sciences in 2015, mainly engaged in the research of special optical materials and optical thin film design, preparation and testing. E-mail: shangpeng163@163.com

    Liu Hua-song (1980—), male, Fuxin city, Liaoning province, PhD, researcher, mainly engaged in design, preparation and characterization technology of the optical thin film, and optical thin film material physics. E-mail: liuhuasong@hotmail.com

    Cao Bo (1983—), male, Siping city, Jilin province, B.S., Engineer, received his B.S. degree from Changchun University of Science and Technology in 2007, mainly engaged in the research of optoelectronic materials, optical processing, optical thin film and its engineering applications. E-mail: caobo@guojing-tech.com

    Corresponding author: liuhuasong@hotmail.comcaobo@guojing-tech.com
  • 摘要:

    为了有效抑制4.3 μm CO2辐射对3 μm~5 μm中波红外目标信号的干扰,基于Needle随机插层优化算法,采用电子束蒸发方法,建立了石英晶振监控方式下多层超厚Ge/Al2O3薄膜生长误差的精确反演修正模型,实现了中波红外陷波滤光片的设计、精确反演与制备;同时,针对中波红外陷波滤光片存在的面型变化大的问题,采用预置基底面型方法,实现了中波红外陷波滤光片低面型调控。研究结果表明:随着镀膜时间的增加,高折射率Ge膜具有较好的生长稳定性,而低折射率Al2O3薄膜材料沉积比例因子变化高达11.9%,且呈规律性渐变趋势;所制备的中波红外陷波滤光片在4.2 μm~4.5 μm波段区间平均截止透过率小于0.3%;3.5 μm~4.05 μm及4.7 μm~5.0 μm波段的平均透过率大于95%,镀膜后的面型被有效控制在较小范围;膜层具有较好的复杂环境适应性,成功通过了GJB 2485-95中牢固性、高温、低温、湿热等环境试验考核。

     

  • 图 1  Ge和Al2O3薄膜折射率和消光系数变化曲线

    Figure 1.  Variation curves of refractive index and extinction coefficient of Ge and Al2O3 films

    图 2  中波红外陷波滤光薄膜理论设计光谱曲线

    Figure 2.  Theoretical design spectral curve of MWiR notch filter

    图 3  薄膜理论光谱透过率随入射角度的变化

    Figure 3.  Variation of theoretical spectral transmittance of films with incident angle

    图 4  固定比例因子下,(LH)4L多层薄膜结构理论设计与实测光谱曲线

    Figure 4.  Theoretical design and measured spectral curves of (LH) 4L multilayer film structure under fixed scale factor

    图 5  各膜层相对误差分布情况

    Figure 5.  Relative error distribution of each film

    图 6  基于修正比例因子,获得的中波红外陷波滤光薄膜设计与实测光谱曲线

    Figure 6.  Design and measured spectral curves of MWiR notch filter film obtained based on the modified scale factor

    图 7  双面镀膜后的实测透射光谱曲线

    Figure 7.  Measured transmission spectrum curve after double-sided coating

    图 8  镀膜前(a)及镀膜后(b)表面形貌图

    Figure 8.  Surface morphology graphs before (a) and after (b) coating

    图 9  基底无面型补偿情况下,镀膜前后的面型变化(a, b);基底有面型补偿情况下,镀膜前后的面型变化(c, d)

    Figure 9.  Surface profile change before and after coating without surface profile compensation (a, b) and with surface profile compensation (c, d)

    表  1  Deposition parameters of thin film

    Table  1.   Deposition parameters of thin film

    Thin filmOxygen flow (sccm)Growth temperature (°C)Deposition rate (nm/s)Electron beam (mA)
    Ge2000.35250
    Al2O3202000.30320
    下载: 导出CSV
  • [1] GUO G, DAI Y L, YE M L. Photoelectric homing technology and its appliance in missile[J]. Infrared and Laser Engineering, 2007, 36(S1): 31-34. (in Chinese) doi: 10.3969/j.issn.1007-2276.2007.z2.007
    [2] HUANG J, ZHANG ZH Y, TIAN SH M. Current status and development trend of airborne air to ground electro-optical detection equipment[J]. Infrared Technology, 2018, 40(5): 412. (in Chinese)
    [3] WU J, LIAO G, MAO H X, et al. IR radiation of CO2 in hypersonic flow fields[J]. Infrared and Laser Engineering, 2013, 42(5): 1113-1116. (in Chinese) doi: 10.3969/j.issn.1007-2276.2013.05.001
    [4] GARRISON M, OZAWA T, LEVIN D. An improved CO2, H2O and soot infrared radiation models for high temperature flows[C]. 36th AIAA Plasmadynamics and Lasers Conference, AIAA, 2005: 4777.
    [5] CHEN W, WANG ZH X, MA D H, et al. Calculation and simulation of infrared radiation characteristics of non-uniform hot gas[J]. Infrared and Laser Engineering, 2010, 39(1): 17-21.
    [6] ZHANG J F, YANG CH M, LIU Q L, et al. Study and preparation of mid-wave infrared 3μm~5μm broad band pass filter[J]. Journal of Applied Optics, 2013, 34(4): 695-699. (in Chinese)
    [7] CHEN CH P, SHI J T, GUO R, et al. Design and preparation of mid-infrared bandpass filter[J]. Journal of Applied Optics, 2012, 33(3): 595-598. (in Chinese)
    [8] 林永昌, 卢维强. 光学薄膜原理[M]. 北京: 国防工业出版社, 1990.

    LIN Y CH, LU W Q. Optics of Thin Films[M]. Beijing: National Defense Industry Press, 1990.
    [9] FAHR S, ULBRICH C, KIRCHARTZ T, et al. Rugate filter for light-trapping in solar cells[J]. Optics Express, 2008, 16(13): 9332-9343. doi: 10.1364/OE.16.009332
    [10] WANG S L, MI G Y, ZHANG J F, et al. Study and preparation of mid-infrared dual channel band-pass filter[J]. Laser &Infrared, 2017, 47(6): 740-744. (in Chinese) doi: 10.3969/j.issn.1001-5078.2017.06.017
    [11] ZHANG B S, MA M J, XIONG Y Q, et al. Study of designing minus filters method based on Rugate theory[J]. Vacuum &Cryogenics, 2010, 16(4): 219-222,232. (in Chinese) doi: 10.3969/j.issn.1006-7086.2010.04.007
    [12] GAO P, YIN X J, ZHAO SH F, et al. Notch filter designed by a quasi-Rugate method[J]. Optical Instruments, 2013, 35(6): 82-90. (in Chinese) doi: 10.3969/j.issn.1005-5630.2013.06.017
    [13] ZHOU SH, WANG K X, LIU D Q, et al. Research on infrared dual-color filters with 3.2~3.8μm and 4.9~5.4μm bands[J]. Chinese Optics, 2021, 14(3): 536-543. (in Chinese) doi: 10.37188/CO.2020-0206
    [14] CAI Y, ZHOU SH, LIU D Q, et al. Design of dual-band-pass optical filter based on combination of Fabry-Perot coatings in mid-infrared band[J]. Acta Optica Sinica, 2016, 36(2): 0222004. (in Chinese) doi: 10.3788/AOS201636.0222004
    [15] LAPPSCHIES M, GÖRTZ B, RISTAU D. Application of optical broadband monitoring to Quasi-Rugate filters by ion-beam sputtering[J]. Applied Optics, 2006, 45(7): 1502-1506. doi: 10.1364/AO.45.001502
    [16] HENDRIX K D, HULSE C A, OCKENFUSS G J, et al. Demonstration of narrowband notch and multi-notch filters[J]. Proceedings of SPIE, 2008, 7067: 706702. doi: 10.1117/12.795498
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  424
  • HTML全文浏览量:  193
  • PDF下载量:  312
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-16
  • 修回日期:  2022-10-08
  • 网络出版日期:  2022-12-22

目录

    /

    返回文章
    返回