留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Golay3稀疏孔径成像系统共相误差研究

钱俊宏 张蓉竹

钱俊宏, 张蓉竹. Golay3稀疏孔径成像系统共相误差研究[J]. 中国光学(中英文), 2023, 16(4): 833-842. doi: 10.37188/CO.2022-0203
引用本文: 钱俊宏, 张蓉竹. Golay3稀疏孔径成像系统共相误差研究[J]. 中国光学(中英文), 2023, 16(4): 833-842. doi: 10.37188/CO.2022-0203
QIAN Jun-hong, ZHANG Rong-zhu. Cophasing error of the Golay3 sparse aperture imaging system[J]. Chinese Optics, 2023, 16(4): 833-842. doi: 10.37188/CO.2022-0203
Citation: QIAN Jun-hong, ZHANG Rong-zhu. Cophasing error of the Golay3 sparse aperture imaging system[J]. Chinese Optics, 2023, 16(4): 833-842. doi: 10.37188/CO.2022-0203

Golay3稀疏孔径成像系统共相误差研究

doi: 10.37188/CO.2022-0203
基金项目: 四川省重大科学仪器设备专项(No. 2019ZDZX0038)
详细信息
    作者简介:

    钱俊宏(1987—),男,四川广安人,博士,工程师,主要从事产品光机电一体化设计与研究。E-mail:475767903@qq.com

    张蓉竹(1975—),女,四川成都人,博士,博士生导师,主要从事精密光学制造与检测研究。E-mail:zhang_rz@scu.edu.cn

  • 中图分类号: O439;

Cophasing error of the Golay3 sparse aperture imaging system

Funds: Supported by Major Science and Technology Project in Sichuan Province (No. 2019ZDZX0038)
More Information
  • 摘要:

    稀疏孔径成像系统在校正共相误差后可实现多个子孔径干涉成像,达到提高成像分辨率的目的。本文以Golay3稀疏孔径成像系统为研究对象,分析了子孔径间存在不同活塞误差和倾斜误差时,系统的MTF和面目标成像情况。研制了一套Golay3稀疏孔径成像系统,以USAF1951分辨率板为面目标进行了成像实验。通过调整光束折转调整模块中的平面反射镜位置,校正了子孔径的活塞误差和倾斜误差,实现了三孔径合成成像,并对理论分析结果进行了验证。实验结果表明:所研制系统的角分辨率为1.77 μrad,接近于等效单口径成像系统的理论极限分辨率1.18 μrad。所研制的Golay3稀疏孔径成像系统能有效校正共相误差,提高成像分辨率。

     

  • 图 1  Golay3阵列结构

    Figure 1.  Golay3 array structure

    图 2  Golay3光学系统

    Figure 2.  Golay3 optical system

    图 3  MTF随填充因子F变化曲线

    Figure 3.  MTF varies with the filling factor F

    图 4  成像模拟对比结果

    Figure 4.  Imaging simulation comparison results

    图 5  子孔径1共相误差

    Figure 5.  Cophasing error of sub-aperture 1

    图 6  子孔径1存在不同活塞误差时三孔径系统的MTF

    Figure 6.  MTFs of Golay3 optical system when sub-aperture 1 has different piston errors

    图 7  子孔径1存在不同倾斜误差时三孔径系统的MTF

    Figure 7.  MTFs of Golay3 optical system when sub-aperture 1 has different tilt errors

    图 8  不同活塞误差下的模拟成像结果

    Figure 8.  Simulated imaging results under different piston errors

    图 9  不同倾斜误差下的模拟成像结果

    Figure 9.  Simulated imaging results under different tilt errors

    图 10  Tenengrad图像清晰度评价结果

    Figure 10.  Tenengrad image sharpness evaluation results

    图 11  Golay3稀疏孔径成像系统

    Figure 11.  Golay3 sparse aperture imaging system

    图 12  单孔径和三孔径成像系统MTF对比

    Figure 12.  Comparison of MTF of a single-aperture and three-apertures imaging system

    图 13  光束折转调整结构

    Figure 13.  Beam steering and adjustment structure

    图 14  FSM结构

    Figure 14.  FSM structure

    图 15  点目标成像结果

    Figure 15.  Point source imaging

    图 16  面目标输入图像

    Figure 16.  Input image of surface target

    图 17  面目标成像实验结果

    Figure 17.  Results of the surface target image source experiment

    表  1  所设计Golay3稀疏孔径成像系统设计参数

    Table  1.   Design specifications of the Golay3 sparse aperture imaging system

    序号参数设计值
    1子孔径口径d200 mm
    2等效口径D570 mm
    3系统焦距f6000 mm
    4全视场角h0.2°
    5工作波段0.48~0.65 μm
    下载: 导出CSV

    表  2  理论结果和实测结果对比

    Table  2.   Comparison of theoretical and measured results

    参数名称单孔径三孔径提高倍数
    极限角分辨率3.36 μrad1.18 μrad2.85
    实测角分辨率4.47 μrad1.77 μrad2.53
    下载: 导出CSV
  • [1] FAN J L, WU Q Y, CHEN B H, et al. Optical design of the Goaly3 multi-mirror telescope system with a wide field of view[J]. Applied Sciences, 2021, 11(3): 1200. doi: 10.3390/app11031200
    [2] LIU T CH, HU J P, ZHU L L, et al. Large effective aperture metalens based on optical sparse aperture system[J]. Chinese Optics Letters, 2020, 18(10): 100001. doi: 10.3788/COL202018.100001
    [3] MEINEL A B. Aperture synthesis using independent telescopes[J]. Applied Optics, 1970, 9(11): 2501-2504. doi: 10.1364/AO.9.002501
    [4] ZHANG L T, LIU M, ZHAO Y J, et al. The optimal design of a binaural sparse-aperture system[J]. Results in Physics, 2020, 16: 102970. doi: 10.1016/j.rinp.2020.102970
    [5] 张超. 稀疏孔径成像系统相位补偿装置结构研究[D]. 西安: 西安工业大学, 2019.

    ZHANG CH. Study of phase compensation device structure for optical sparse-aperture imaging system[D]. Xi’an: Xi’an Technological University, 2019. (in Chinese)
    [6] 刘何伟, 钱俊宏, 马秀刚, 等. 稀疏孔径望远系统的装调检测与模拟分析[J]. 激光杂志,2021,42(10):31-36. doi: 10.14016/j.cnki.jgzz.2021.10.031

    LIU H W, QIAN J H, MA X G, et al. Adjustment test and simulation analysis on sparse aperture telescopic system[J]. Laser Journal, 2021, 42(10): 31-36. (in Chinese) doi: 10.14016/j.cnki.jgzz.2021.10.031
    [7] TRAUB W A. Combining beams from separated telescopes[J]. Applied Optics, 1986, 25(4): 528-532. doi: 10.1364/AO.25.000528
    [8] MILLER N J, DIERKING M P, DUNCAN B D. Optical sparse aperture imaging[J]. Applied Optics, 2007, 46(23): 5933-5943. doi: 10.1364/AO.46.005933
    [9] HE X J, MA H T, LUO CH X. Simulation of co-phase error correction of optical multi-aperture imaging system based on stochastic parallel gradient decent algorithm[J]. Proceedings of SPIE, 2016, 9682: 96820V.
    [10] 何小君. 基于随机并行优化算法的光学多孔径成像共相误差校正技术研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2017.

    HE X J. Study on Co-phase error correction of optical multi-aperture imaging system based on stochastic parallel gradient decent algorithm[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optics and Electronics, Chinese Academy of Sciences), 2017. (in Chinese)
    [11] XIE Z H, MA H T, Qi B, et al. Experimental demonstration of enhanced resolution of a Golay3 sparse-aperture telescope[J]. Chinese Optics Letters, 2017, 15(4): 041101. doi: 10.3788/COL201715.041101
    [12] 谢宗良. 相控望远镜阵列成像关键技术研究[D]. 成都: 中国科学院光电技术研究所, 2018.

    XIE Z L. Study on key technology of phased telescope array imaging[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optics and Electronics, Chinese Academy of Sciences), 2018. (in Chinese)
    [13] JIANG A M, WANG S, DONG ZH CH, et al. Wide-band white light sparse-aperture Fizeau imaging interferometer testbed for a distributed small-satellites constellation[J]. Applied Optics, 2018, 57(11): 2736-2746. doi: 10.1364/AO.57.002736
    [14] JIANG A M, DONG ZH CH, XUE J W, et al. Detection and closed-loop control of piston errors for a Fizeau imaging interferometer[J]. Applied Optics, 2020, 59(13): 3892-3900. doi: 10.1364/AO.387895
    [15] GOLAY M J E. Point arrays having compact, nonredundant autocorrelations[J]. Journal of the Optical Society of America, 1971, 61(2): 272-273. doi: 10.1364/JOSA.61.000272
    [16] QIAN J H, LIU H W, LIU T, et al. Piston error evaluation and correction for multi-aperture imaging system[J]. Journal of Physics:Conference Series, 2020, 1775(1): 012006.
    [17] MA X F, XIE Z L, MA H T, et al. Piston sensing of sparse aperture systems with a single broadband image via deep learning[J]. Optics Express, 2019, 27(11): 16058-16070. doi: 10.1364/OE.27.016058
    [18] WU Q Y, FAN J L, WU F, et al. Error analysis of the Golay3 optical imaging system[J]. Applied Optics, 2013, 52(13): 2966-2973. doi: 10.1364/AO.52.002966
    [19] CHEN B, WU Q Y, FAN J L. A Golay3 sparse aperture optical system of primary mirror with free-form surface[J]. Optical Review, 2021, 28(1): 113-118. doi: 10.1007/s10043-021-00641-z
  • 加载中
图(17) / 表(2)
计量
  • 文章访问数:  403
  • HTML全文浏览量:  196
  • PDF下载量:  241
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-26
  • 修回日期:  2022-10-26
  • 网络出版日期:  2023-02-06

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!