留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的Fano共振超材料设计

杨知虎 傅佳慧 张玉萍 张会云

杨知虎, 傅佳慧, 张玉萍, 张会云. 基于深度学习的Fano共振超材料设计[J]. 中国光学(中英文). doi: 10.37188/CO.2022-0208
引用本文: 杨知虎, 傅佳慧, 张玉萍, 张会云. 基于深度学习的Fano共振超材料设计[J]. 中国光学(中英文). doi: 10.37188/CO.2022-0208
Yang Zhi-hu, Fu Jia-hui, Zhang Yu-ping, Zhang Hui-yun. Fano resonances design of metamaterials based on deep learning[J]. Chinese Optics. doi: 10.37188/CO.2022-0208
Citation: Yang Zhi-hu, Fu Jia-hui, Zhang Yu-ping, Zhang Hui-yun. Fano resonances design of metamaterials based on deep learning[J]. Chinese Optics. doi: 10.37188/CO.2022-0208

基于深度学习的Fano共振超材料设计

doi: 10.37188/CO.2022-0208
基金项目: 国家自然科学基金(No. 61875106 和 No. 62105187);山东省自然科学基金(No. ZR2021QF010)。
详细信息
    作者简介:

    杨知虎(1998—),男,黑龙江牡丹江人,山东科技大学在读硕士研究生,主要研究方向为基于深度学习的超材料设计,20年于山东科技大学获学士学位。E-mail: 383048999@qq.com

    张会云(1974—),男,山东沂水人,博士,教授,博士研究生导师,主要从事太赫兹功能器件研究。2008年于天津大学获博士学位。E-mail: sdust_thz@126.com

  • 中图分类号: O436.3

Fano resonances design of metamaterials based on deep learning

Funds: Supported by National Natural Science Foundation of China (No. 61875106 and No. 62105187); Natural Science Foundation of Shandong Province (No. ZR2021QF010);
More Information
    Corresponding author: sdust_thz@126.com
  • 摘要:

    本文提出了一种基于深度学习的超材料Fano共振设计方法,能够获得高Q共振的线宽、振幅和光谱位置特性。利用深度神经网络建立结构参数和透射谱曲线之间的映射,正向网络实现对透射谱的预测;逆向网络实现对高Q共振按需设计,设计过程中实现了低均方误差(MSE),训练集的均方误差为 0.007。结果表明,与传统方法需要耗时的逐个数值模拟相比,深度学习的设计方法大大简化了设计过程,实现了满足高效、快速的设计目标。对Fano共振的设计也可推广应用到其它类型的超材料的自动逆向设计,显著提高了更复杂的超材料设计的可行性。

     

  • 图 1  用于双向神经网络设计过程的框架的示意图。(a)ASRR的单位单元结构图(b)正向神经网络图(c)正向预测输出的透射谱(d)逆向设计输出的最优参数(e)逆向神经网络图(f)逆向设计输入的透射谱

    Figure 1.  Schematic diagram of the framework used for the bidirectional neural network design process. (a) The unit cell structure diagram of ASRR (b) The forward neural network diagram (c) Transmission spectrum of the forward prediction output (d) Optimal parameters of the reverse design output (e) Inverse neural network diagram (f) Transmission spectrum of the inverse design input

    图 2  神经元模型

    Figure 2.  neuron model

    图 3  激活函数

    Figure 3.  Activation function

    图 4  DNN的结构参数

    Figure 4.  Structural parameters of DNN

    图 5  正向神经网络损失

    Figure 5.  Forward neural network loss

    图 6  比较不同网络层数对损失函数的影响。

    Figure 6.  Comparison of the influence of different network layers on the loss function.

    图 7  正向预测结果和数值模拟结果。

    Figure 7.  Forward prediction results and numerical simulation results.

    图 8  (a) 逆向神经网络的模型训练损失的演变。(b) 逆向神经网络输出,CST仿真结果和目标频谱比较。

    Figure 8.  (a) Evolution of model training loss for an inverse neural network. (b) Inverse neural network output,CST simulation results and target spectrum comparison.

    图 9  优化后的模型俯视图,沿y轴入射,周期性P=90 µm。铝环厚度H=14 µm,铝环臂宽W=6 µm,间隙G=3 µm,非对称性D=3 µm。

    Figure 9.  Top view of the optimized model, incident along the y-axis, periodicity P=90 µm. Aluminum ring thickness H=14 μm, aluminum ring arm width D=6 μm, gap G=3 μm, asymmetric tuning factor D=3 μm.

    图 10  在0.97 THz处,结构参数为[70,14,6,3,3]晶格失配和[90,14,6,3,3]晶格匹配条件下,Fano的近场总电场和磁场振幅|E|和|B|。同一场的所有贴图共享相同范围的颜色比例。

    Figure 10.  The near-field total electric and magnetic field amplitude, |E| and |B|, of the Fano resonance under the structural parameters are [70,14,6,3,3] lattice mismatched and [90,14,6,3,3] lattice matched conditions. All maps of the same field share a color scale with the same range.

    表  1  训练神经网络的数据值 单位:μm

    Table  1.   Data values of training neural network unit: μm

    PHWGD
    7010511
    7111622
    $ \vdots $$ \vdots $$ \vdots $$ \vdots $$ \vdots $
    12515733
    下载: 导出CSV
  • [1] FANO U. Effects of configuration interaction on intensities and phase shifts[J]. Physical Review, 1961, 124(6): 1866-1878. doi: 10.1103/PhysRev.124.1866
    [2] FEDOTOV V A, ROSE M, PROSVIRNIN S L, et al. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry[J]. Physical Review Letters, 2007, 99(14): 147401. doi: 10.1103/PhysRevLett.99.147401
    [3] HAO F, SONNEFRAUD Y, VAN DORPE P, et al. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance[J]. Nano Letters, 2008, 8(11): 3983-3988. doi: 10.1021/nl802509r
    [4] RAHMANI M, LUK'YANCHUK B, HONG M H. Fano resonance in novel plasmonic nanostructures[J]. Laser &Photonics Reviews, 2013, 7(3): 329-349.
    [5] KUZNETSOV A I, MIROSHNICHENKO A E, BRONGERSMA M L, et al. Optically resonant dielectric nanostructures[J]. Science, 2016, 354(6314): eaag2472. doi: 10.1126/science.aag2472
    [6] CHEN J J, GAN F Y, WANG Y J, et al. Plasmonic sensing and modulation based on Fano resonances[J]. Advanced Optical Materials, 2018, 6(9): 1701152. doi: 10.1002/adom.201701152
    [7] LIMONOV M F. Fano resonance for applications[J]. Advances in Optics and Photonics, 2021, 13(3): 703-771. doi: 10.1364/AOP.420731
    [8] 付娆, 李子乐, 郑国兴. 超构表面的振幅调控及其功能器件研究进展[J]. 中国光学,2021,14(4):886-899. doi: 10.37188/CO.2021-0017

    FU R, LI Z L, ZHENG G X. Research development of amplitude-modulated metasurfaces and their functional devices[J]. Chinese Optics, 2021, 14(4): 886-899. (in Chinese) doi: 10.37188/CO.2021-0017
    [9] 林婧, 李琦, 邱孟, 等. 人工原子间耦合: 超构表面调控电磁波的新自由度[J]. 中国光学,2021,14(4):717-735. doi: 10.37188/CO.2021-0030

    LIN J, LI Q, QIU M, et al. Coupling between Meta-atoms: a new degree of freedom in metasurfaces manipulating electromagnetic waves[J]. Chinese Optics, 2021, 14(4): 717-735. (in Chinese) doi: 10.37188/CO.2021-0030
    [10] 王锋, 刘星辰, 王政平, 等. 基于手性超材料的太赫兹波非对称传输的研究[J]. 哈尔滨工程大学学报,2015,36(12):1638-1641. doi: 10.11990/jheu.201501046

    WANG F, LIU X CH, WANG ZH P, et al. A study of asymmetric transmission of terahertz waves based on chiral metamaterials[J]. Journal of Harbin Engineering University, 2015, 36(12): 1638-1641. (in Chinese) doi: 10.11990/jheu.201501046
    [11] MIROSHNICHENKO A E, FLACH S, KIVSHAR Y S. Fano resonances in nanoscale structures[J]. Reviews of Modern Physics, 2010, 82(3): 2257-2298. doi: 10.1103/RevModPhys.82.2257
    [12] LIU SH D, YANG ZH, LIU R P, et al. High sensitivity localized surface Plasmon resonance sensing using a double split nanoring cavity[J]. The Journal of Physical Chemistry C, 2011, 115(50): 24469-24477. doi: 10.1021/jp209754m
    [13] CHANG W SH, LASSITER J B, SWANGLAP P, et al. A plasmonic Fano switch[J]. Nano Letters, 2012, 12(9): 4977-4982. doi: 10.1021/nl302610v
    [14] PIAO X J, YU S, PARK N. Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator[J]. Optics Express, 2012, 20(17): 18994-18999. doi: 10.1364/OE.20.018994
    [15] WU C, KHANIKAEV A B, SHVETS G. Broadband slow light metamaterial based on a double-continuum Fano resonance[J]. Physical Review Letters, 2011, 106(10): 107403. doi: 10.1103/PhysRevLett.106.107403
    [16] JAFAR-ZANJANI S, INAMPUDI S, MOSALLAEI H. Adaptive genetic algorithm for optical metasurfaces design[J]. Scientific Reports, 2018, 8(1): 11040. doi: 10.1038/s41598-018-29275-z
    [17] PHAN T, SELL D, WANG E W, et al. High-efficiency, large-area, topology-optimized metasurfaces[J]. Light:Science &Applications, 2019, 8(1): 48.
    [18] RONG J J, YE W J. Multifunctional elastic metasurface design with topology optimization[J]. Acta Materialia, 2020, 185: 382-399. doi: 10.1016/j.actamat.2019.12.017
    [19] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
    [20] 刘硕, 张霜, 崔铁军. 拓扑电路——新奇拓扑物理现象的研究平台[J]. 中国光学,2021,14(4):736-753. doi: 10.37188/CO.2021-0095

    LIU SH, ZHANG SH, CUI T J. Topological circuit: a playground for exotic topological physics[J]. Chinese Optics, 2021, 14(4): 736-753. (in Chinese) doi: 10.37188/CO.2021-0095
    [21] 苏照贤, 姚恩旭, 黄玲玲, 等. 二维人工超材料的光学拓扑性质[J]. 中国光学,2021,14(4):955-967. doi: 10.37188/CO.2021-0074

    SU ZH X, YAO E X, HUANG L L, et al. Optical topological characteristics of two dimensional artificial metamaterials[J]. Chinese Optics, 2021, 14(4): 955-967. (in Chinese) doi: 10.37188/CO.2021-0074
    [22] LI H, OTA K, DONG M X. Learning IoT in edge: deep learning for the internet of things with edge computing[J]. IEEE Network, 2018, 32(1): 96-101. doi: 10.1109/MNET.2018.1700202
    [23] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489. doi: 10.1038/nature16961
    [24] NASSIF A B, SHAHIN I, ATTILI I, et al. Speech recognition using deep neural networks: a systematic review[J]. IEEE Access, 2019, 7: 19143-19165. doi: 10.1109/ACCESS.2019.2896880
    [25] NODA K, ARIE H, SUGA Y, et al. Multimodal integration learning of robot behavior using deep neural networks[J]. Robotics and Autonomous Systems, 2014, 62(6): 721-736. doi: 10.1016/j.robot.2014.03.003
    [26] MA W, CHENG F, LIU Y M. Deep-learning-enabled on-demand design of chiral metamaterials[J]. ACS Nano, 2018, 12(6): 6326-6334. doi: 10.1021/acsnano.8b03569
    [27] NADELL C C, HUANG B H, MALOF J M, et al. Deep learning for accelerated all-dielectric metasurface design[J]. Optics Express, 2019, 27(20): 27523-27535. doi: 10.1364/OE.27.027523
    [28] XU L, RAHMANI M, MA Y X, et al. Enhanced light–matter interactions in dielectric nanostructures via machine-learning approach[J]. Advanced Photonics, 2020, 2(2): 026003.
    [29] HOU ZH Y, ZHANG P Y, GE M F, et al. Metamaterial reverse multiple prediction method based on deep learning[J]. Nanomaterials, 2021, 11(10): 2672. doi: 10.3390/nano11102672
    [30] ZHOU X SH, XIAO Q D, WANG H. Metamaterials design method based on deep learning database[J]. Journal of Physics:Conference Series, 2022, 2185: 012023. doi: 10.1088/1742-6596/2185/1/012023
    [31] KHATIB O, REN S M, MALOF J, et al. Deep learning the electromagnetic properties of metamaterials—a comprehensive review[J]. Advanced Functional Materials, 2021, 31(31): 2101748. doi: 10.1002/adfm.202101748
    [32] TAN T C W, PLUM E, SINGH R. Lattice-enhanced Fano resonances from bound states in the continuum metasurfaces[J]. Advanced Optical Materials, 2020, 8(6): 1901572. doi: 10.1002/adom.201901572
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  123
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-10
  • 录用日期:  2022-12-16
  • 网络出版日期:  2023-03-08

目录

    /

    返回文章
    返回