Tunable long-wave infrared optical parametric oscillator based on temperature-adjustable ZnGeP2
-
摘要:
为了获得可调谐长波红外激光输出,本文设计了一种基于ZnGeP2(ZGP)温度调谐的长波红外光参量振荡器。采用中心波长为2097 nm的Ho:YAG激光器泵浦不同相位匹配角的ZGP晶体,通过改变晶体工作温度来研究ZnGeP2光参量振荡器(ZGP-OPO)的温度调谐特性。在15~30 °C温度范围内,实现了7.53~8.77 μm分段可调谐长波激光输出,总调谐宽度为1.24 μm。整个调谐范围内,输出功率大于1.503 W,当闲频光波长为8.77 μm时,输出功率为1.503 W,斜率效率和光光转换效率分别为12.19%和6.53%。实验结果表明,ZGP温度调谐是实现连续可调谐长波红外激光输出的有效技术途径。本实验研究在可调谐长波固体激光器工程化领域具有潜在的应用价值。
Abstract:In order to realize tunable longwave infrared laser, we design a ZGP temperature tuned longwave infrared optical parametric oscillator. A Ho:YAG laser with the center wavelength of 2097 nm is used to pump ZGP crystals with different phase matching angles. The temperature adjustable properties of ZGP-OPO is researched by changing the operating temperature of crystal. The laser with a segment continuously tunable range of 7.53−8.77 μm is realized in the temperature range of 15−30°C, with a total tuning range of 1.24 μm. The output power of ZnGeP2-Optical Parametric Oscillator(ZGP-OPO) is greater than 1.503 W over the entire tuning range. The output power is 1.503 W at the idler wavelength of 8.77 μm, and the corresponding slope efficiency and optical conversion efficiency are 12.19% and 6.53%, respectively. The experimental results show that temperature tuning of ZGP is an effective technical method to obtain continuously tunable long-wave infrared laser. This research has potential application value in the field of engineering of tunable long-wave laser.
-
Key words:
- temperature tunable /
- optical parametric oscillator /
- ZnGeP2 /
- long-wave
-
表 1 Sellmeier方程中的各参数值
Table 1. Parameter values in Sellmeier equations
Parameter Value ne no A(T) 5.23-6.4345×10−4T
+1.8373×10−6T 2
−4.9464×10−9T 34.4011+7.948×10−5T
+2.0697×10−6T 2
−6.3256×10−9T 3B(T) 4.5037+1.2308×10−3T
−9.7765×10−7T 2
+4.6323×10−9T 35.1168+4.0214×10−4T
−1.0452×10−6T 2
+5.8067×10−9T 3c 0.15503 0.134894 d 1.56991 1.31394 f 706.750 603.937 -
[1] MELKONIAN J M, ARMOUGOM J, RAYBAUT M, et al. Long-wave infrared multi-wavelength optical source for standoff detection of chemical warfare agents[J]. Applied Optics, 2020, 59(35): 11156-11166. doi: 10.1364/AO.410053 [2] 陈颖. 机载先进红外对抗技术发展思考[J]. 航天电子对抗,2020,36(1):19-23. doi: 10.3969/j.issn.1673-2421.2020.01.005CHEN Y. Development of airborne advanced infrared countermeasures technology[J]. Aerospace Electronic Warfare, 2020, 36(1): 19-23. (in Chinese) doi: 10.3969/j.issn.1673-2421.2020.01.005 [3] SIJAN A. Development of military lasers for optical countermeasures in the mid-IR[J]. Proceedings of SPIE, 2009, 7483: 748304. doi: 10.1117/12.835439 [4] LU Y, ZHU Z R, BAI J ZH, et al. Generation of tail-free short pulses using high-pressure CO2 laser[J]. Chinese Optics Letters, 2022, 20(5): 051401. doi: 10.3788/COL202220.051401 [5] 潘其坤, 苗昉晨, 司红利, 等. 紧凑型波长自动调谐脉冲CO2激光器[J]. 中国光学(中英文),2022,15(5):1007-1012. doi: 10.37188/CO.2022-0107PAN Q K, MIAO F CH, SI H L, et al. Compact pulsed CO2 laser with wavelength automatic tuning[J]. Chinese Optics, 2022, 15(5): 1007-1012. (in Chinese) doi: 10.37188/CO.2022-0107 [6] 姚宝权, 杨科, 密淑一, 等. 高功率Ho: YAG激光器及其泵浦的磷锗锌、硒镓钡和硒化镉中长波红外非线性光学频率转换研究进展[J]. 中国激光,2022,49(1):0101002. doi: 10.3788/CJL202249.0101002YAO B Q, YANG K, MI SH Y, et al. Research progress of high-power Ho: YAG lasers and its application for pumping mid-far-infrared nonlinear frequency conversion in ZGP, BGSe and CdSe crystals[J]. Chinese Journal of Lasers, 2022, 49(1): 0101002. (in Chinese) doi: 10.3788/CJL202249.0101002 [7] 李充, 谢冀江, 潘其坤, 等. 中红外光学参量振荡器技术进展[J]. 中国光学,2016,9(6):615-624.LI CH, XIE J J, PAN Q K, et al. Progress of mid-infrared optical parametric oscillator[J]. Chinese Optics, 2016, 9(6): 615-624. (in Chinese) [8] 黄彦, 张宇露, 高志强, 等. 用于痕量气体检测的宽调谐外腔量子级联激光器研究[J]. 遥测遥控,2019,40(1):20-27. doi: 10.3969/j.issn.2095-1000.2019.01.004HUANG Y, ZHANG Y L, GAO ZH Q, et al. Research on widely tunable external cavity quantum cascade lasers for trace gas detection[J]. Journal of Telemetry,Tracking and Command, 2019, 40(1): 20-27. (in Chinese) doi: 10.3969/j.issn.2095-1000.2019.01.004 [9] QIAN CH P, DUAN X M, YAO B Q, et al. 11.4 W long-wave infrared source based on ZnGeP2 optical parametric amplifier[J]. Optics Express, 2018, 26(23): 30195-30201. doi: 10.1364/OE.26.030195 [10] HAIDAR S, MIYAMOTO K, ITO H. Generation of tunable mid-IR (5.5 - 9.3 μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator[J]. Optics Communications, 2004, 241(1-3): 173-178. doi: 10.1016/j.optcom.2004.06.065 [11] LIU G Y, CHEN Y, YAO B Q, et al. 3.5 W long-wave infrared ZnGeP2 optical parametric oscillator at 9.8 µm[J]. Optics Letters, 2020, 45(8): 2347-2350. doi: 10.1364/OL.389603 [12] TIAN J T, LI ZH Y, ZHAO L L, et al. Long-wave infrared ZnGeP2 optical parametric oscillator with improved tunability by use of a cavity compensation technique[J]. Optical Engineering, 2022, 61(7): 076102. [13] DAS S. Pump tuned wide tunable noncritically phase-matched ZnGeP2 narrow line width optical parametric oscillator[J]. Infrared Physics &Technology, 2015, 69: 13-18. [14] 孟冬冬, 乔占朵, 高宝光, 等. 基于ZnGeP2光参量振荡器的长波红外双波段调谐实验研究[J]. 红外与激光工程,2022,51(5):2021G008. doi: 10.3788/IRLA2021G008MENG D D, QIAO ZH D, GAO B G, et al. Experimental study on tunable characteristics of optical parametric oscillator based on ZnGeP2 in long-infared dual-band[J]. Infrared and Laser Engineering, 2022, 51(5): 2021G008. (in Chinese) doi: 10.3788/IRLA2021G008 [15] BHAR G, GHOSH G. Temperature dependent phase-matched nonlinear optical devices using CdSe and ZnGeP2[J]. IEEE Journal of Quantum Electronics, 1980, 16(8): 838-843. doi: 10.1109/JQE.1980.1070580 [16] IONIN A A, KINYAEVSKIY I O, KLIMACHEV Y M, et al. Temperature phase-matching tuning of nonlinear ZnGeP2 crystal for frequency conversion under noncritical spectral phase-matching[J]. Infrared Physics &Technology, 2019, 102: 103009. [17] GUHA S. Updated temperature dependent Sellmeier equations for ZnGeP2 crystals (Conference Presentation)[J]. Proceedings of SPIE, 2019, 10902: 1090210.