留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度调谐ZnGeP2长波红外光参量振荡器

田俊涛 李辉 赵莉莉 李志永 王海 刘松阳 许文宁 白进周 谭荣清

田俊涛, 李辉, 赵莉莉, 李志永, 王海, 刘松阳, 许文宁, 白进周, 谭荣清. 温度调谐ZnGeP2长波红外光参量振荡器[J]. 中国光学(中英文), 2023, 16(4): 861-867. doi: 10.37188/CO.2022-0217
引用本文: 田俊涛, 李辉, 赵莉莉, 李志永, 王海, 刘松阳, 许文宁, 白进周, 谭荣清. 温度调谐ZnGeP2长波红外光参量振荡器[J]. 中国光学(中英文), 2023, 16(4): 861-867. doi: 10.37188/CO.2022-0217
TIAN Jun-tao, LI Hui, ZHAO Li-li, LI Zhi-yong, WANG Hai, LIU Song-yang, XU Wen-ning, BAI Jin-zhou, TAN Rong-qing. Tunable long-wave infrared optical parametric oscillator based on temperature-adjustable ZnGeP2[J]. Chinese Optics, 2023, 16(4): 861-867. doi: 10.37188/CO.2022-0217
Citation: TIAN Jun-tao, LI Hui, ZHAO Li-li, LI Zhi-yong, WANG Hai, LIU Song-yang, XU Wen-ning, BAI Jin-zhou, TAN Rong-qing. Tunable long-wave infrared optical parametric oscillator based on temperature-adjustable ZnGeP2[J]. Chinese Optics, 2023, 16(4): 861-867. doi: 10.37188/CO.2022-0217

温度调谐ZnGeP2长波红外光参量振荡器

基金项目: 国家自然科学基金(No. 61875198,No. 61775212);脉冲功率激光技术国家重点实验室开放基金(No. SKL2021KF04);中国科学院仪器设备研制项目(No. YJKYYQ20210045)
详细信息
    作者简介:

    田俊涛(1993—),男,河南周口人,博士研究生,2018年于中国石油大学(北京)获得学士学位,主要从事可调谐长波红外固体激光器方面的研究。E-mail:tianjuntao518@163.com

    谭荣清(1966—),男,辽宁辽阳人,博士,研究员,博士生导师,1988年于北京大学获得物理学学士学位,1991年、2001年于中国科学院电子学研究所获得工学硕士、博士学位,现任中国科学院空天信息创新研究院研究员, 主要从事激光器和激光技术及应用方面的研究。E-mail:rqtan@mail.ie.ac.cn

  • 中图分类号: TN248.1

Tunable long-wave infrared optical parametric oscillator based on temperature-adjustable ZnGeP2

Funds: Supported by National Natural Science Foundation of China (No. 61875198, No. 61775212); Open Foundation of State Key Laboratory of Pulsed Power Laser Technology (No. SKL2021KF04); Scientific Instrument Developing Project of the Chinese Academy of Sciences (No. YJKYYQ20210045)
More Information
  • 摘要:

    为了获得可调谐长波红外激光输出,本文设计了一种基于ZnGeP2(ZGP)温度调谐的长波红外光参量振荡器。采用中心波长为2097 nm的Ho:YAG激光器泵浦不同相位匹配角的ZGP晶体,通过改变晶体工作温度来研究ZnGeP2光参量振荡器(ZGP-OPO)的温度调谐特性。在15~30 °C温度范围内,实现了7.53~8.77 μm分段可调谐长波激光输出,总调谐宽度为1.24 μm。整个调谐范围内,输出功率大于1.503 W,当闲频光波长为8.77 μm时,输出功率为1.503 W,斜率效率和光光转换效率分别为12.19%和6.53%。实验结果表明,ZGP温度调谐是实现连续可调谐长波红外激光输出的有效技术途径。本实验研究在可调谐长波固体激光器工程化领域具有潜在的应用价值。

     

  • 图 1  ZGP-OPO实验装置图

    Figure 1.  Experimental setup for ZGP-OPO

    图 2  不同匹配角θ下计算的波长调谐曲线和测量的波长。(a) θ=51.3;(b) θ=51.0;(c) θ=50.6

    Figure 2.  Calculated wavelength tuning curves and measured wavelengths at different matching angles. (a) θ=51.3; (b) θ=51.0; (c) θ=50.6

    图 3  不同匹配角和温度下的输出功率

    Figure 3.  Output powers at different matching angles and temperatures

    图 4  闲频光8.77 μm的光束质量和光斑

    Figure 4.  Beam quality and spot of idler at the wavelength of 8.77 μm

    图 5  闲频光8.77 μm的输出特性。(a)输出功率和脉冲波形的关系;(b)功率不稳定度

    Figure 5.  Output characteristics of idler with the wavelength of 8.77 μm. (a) Relationship between output power and pulse waveform; (b) power instability

    图 6  测量的ZGP-OPO闲频光光谱图

    Figure 6.  Measured ZGP-OPO idler spectrum

    表  1  Sellmeier方程中的各参数值

    Table  1.   Parameter values in Sellmeier equations

    ParameterValue
    neno
    A(T)5.23-6.4345×10−4T
    +1.8373×10−6T 2
    −4.9464×10−9T 3
    4.4011+7.948×10−5T
    +2.0697×10−6T 2
    −6.3256×10−9T 3
    B(T)4.5037+1.2308×10−3T
    −9.7765×10−7T 2
    +4.6323×10−9T 3
    5.1168+4.0214×10−4T
    −1.0452×10−6T 2
    +5.8067×10−9T 3
    c0.155030.134894
    d1.569911.31394
    f706.750603.937
    下载: 导出CSV
  • [1] MELKONIAN J M, ARMOUGOM J, RAYBAUT M, et al. Long-wave infrared multi-wavelength optical source for standoff detection of chemical warfare agents[J]. Applied Optics, 2020, 59(35): 11156-11166. doi: 10.1364/AO.410053
    [2] 陈颖. 机载先进红外对抗技术发展思考[J]. 航天电子对抗,2020,36(1):19-23. doi: 10.3969/j.issn.1673-2421.2020.01.005

    CHEN Y. Development of airborne advanced infrared countermeasures technology[J]. Aerospace Electronic Warfare, 2020, 36(1): 19-23. (in Chinese) doi: 10.3969/j.issn.1673-2421.2020.01.005
    [3] SIJAN A. Development of military lasers for optical countermeasures in the mid-IR[J]. Proceedings of SPIE, 2009, 7483: 748304. doi: 10.1117/12.835439
    [4] LU Y, ZHU Z R, BAI J ZH, et al. Generation of tail-free short pulses using high-pressure CO2 laser[J]. Chinese Optics Letters, 2022, 20(5): 051401. doi: 10.3788/COL202220.051401
    [5] 潘其坤, 苗昉晨, 司红利, 等. 紧凑型波长自动调谐脉冲CO2激光器[J]. 中国光学(中英文),2022,15(5):1007-1012. doi: 10.37188/CO.2022-0107

    PAN Q K, MIAO F CH, SI H L, et al. Compact pulsed CO2 laser with wavelength automatic tuning[J]. Chinese Optics, 2022, 15(5): 1007-1012. (in Chinese) doi: 10.37188/CO.2022-0107
    [6] 姚宝权, 杨科, 密淑一, 等. 高功率Ho: YAG激光器及其泵浦的磷锗锌、硒镓钡和硒化镉中长波红外非线性光学频率转换研究进展[J]. 中国激光,2022,49(1):0101002. doi: 10.3788/CJL202249.0101002

    YAO B Q, YANG K, MI SH Y, et al. Research progress of high-power Ho: YAG lasers and its application for pumping mid-far-infrared nonlinear frequency conversion in ZGP, BGSe and CdSe crystals[J]. Chinese Journal of Lasers, 2022, 49(1): 0101002. (in Chinese) doi: 10.3788/CJL202249.0101002
    [7] 李充, 谢冀江, 潘其坤, 等. 中红外光学参量振荡器技术进展[J]. 中国光学,2016,9(6):615-624.

    LI CH, XIE J J, PAN Q K, et al. Progress of mid-infrared optical parametric oscillator[J]. Chinese Optics, 2016, 9(6): 615-624. (in Chinese)
    [8] 黄彦, 张宇露, 高志强, 等. 用于痕量气体检测的宽调谐外腔量子级联激光器研究[J]. 遥测遥控,2019,40(1):20-27. doi: 10.3969/j.issn.2095-1000.2019.01.004

    HUANG Y, ZHANG Y L, GAO ZH Q, et al. Research on widely tunable external cavity quantum cascade lasers for trace gas detection[J]. Journal of Telemetry,Tracking and Command, 2019, 40(1): 20-27. (in Chinese) doi: 10.3969/j.issn.2095-1000.2019.01.004
    [9] QIAN CH P, DUAN X M, YAO B Q, et al. 11.4 W long-wave infrared source based on ZnGeP2 optical parametric amplifier[J]. Optics Express, 2018, 26(23): 30195-30201. doi: 10.1364/OE.26.030195
    [10] HAIDAR S, MIYAMOTO K, ITO H. Generation of tunable mid-IR (5.5 - 9.3 μm) from a 2-μm pumped ZnGeP2 optical parametric oscillator[J]. Optics Communications, 2004, 241(1-3): 173-178. doi: 10.1016/j.optcom.2004.06.065
    [11] LIU G Y, CHEN Y, YAO B Q, et al. 3.5 W long-wave infrared ZnGeP2 optical parametric oscillator at 9.8 µm[J]. Optics Letters, 2020, 45(8): 2347-2350. doi: 10.1364/OL.389603
    [12] TIAN J T, LI ZH Y, ZHAO L L, et al. Long-wave infrared ZnGeP2 optical parametric oscillator with improved tunability by use of a cavity compensation technique[J]. Optical Engineering, 2022, 61(7): 076102.
    [13] DAS S. Pump tuned wide tunable noncritically phase-matched ZnGeP2 narrow line width optical parametric oscillator[J]. Infrared Physics &Technology, 2015, 69: 13-18.
    [14] 孟冬冬, 乔占朵, 高宝光, 等. 基于ZnGeP2光参量振荡器的长波红外双波段调谐实验研究[J]. 红外与激光工程,2022,51(5):2021G008. doi: 10.3788/IRLA2021G008

    MENG D D, QIAO ZH D, GAO B G, et al. Experimental study on tunable characteristics of optical parametric oscillator based on ZnGeP2 in long-infared dual-band[J]. Infrared and Laser Engineering, 2022, 51(5): 2021G008. (in Chinese) doi: 10.3788/IRLA2021G008
    [15] BHAR G, GHOSH G. Temperature dependent phase-matched nonlinear optical devices using CdSe and ZnGeP2[J]. IEEE Journal of Quantum Electronics, 1980, 16(8): 838-843. doi: 10.1109/JQE.1980.1070580
    [16] IONIN A A, KINYAEVSKIY I O, KLIMACHEV Y M, et al. Temperature phase-matching tuning of nonlinear ZnGeP2 crystal for frequency conversion under noncritical spectral phase-matching[J]. Infrared Physics &Technology, 2019, 102: 103009.
    [17] GUHA S. Updated temperature dependent Sellmeier equations for ZnGeP2 crystals (Conference Presentation)[J]. Proceedings of SPIE, 2019, 10902: 1090210.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  417
  • HTML全文浏览量:  264
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-18
  • 修回日期:  2022-11-14
  • 录用日期:  2022-12-12
  • 网络出版日期:  2023-03-08

目录

    /

    返回文章
    返回