留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

角度复用的光学加密超表面的超快激光嵌套加工方法研究

张晓斌 韩伟娜

张晓斌, 韩伟娜. 角度复用的光学加密超表面的超快激光嵌套加工方法研究[J]. 中国光学(中英文). doi: 10.37188/CO.2022-0228
引用本文: 张晓斌, 韩伟娜. 角度复用的光学加密超表面的超快激光嵌套加工方法研究[J]. 中国光学(中英文). doi: 10.37188/CO.2022-0228
ZHANG Xiao-bin, HAN Wei-na. Ultrafast laser nested Machining method for angle-multiplexed optically encrypted metasurface[J]. Chinese Optics. doi: 10.37188/CO.2022-0228
Citation: ZHANG Xiao-bin, HAN Wei-na. Ultrafast laser nested Machining method for angle-multiplexed optically encrypted metasurface[J]. Chinese Optics. doi: 10.37188/CO.2022-0228

角度复用的光学加密超表面的超快激光嵌套加工方法研究

doi: 10.37188/CO.2022-0228
基金项目: 重庆市自然科学基金(No. cstc2021jcyj-cxttX0003,No. CSTB2022NSCQ-MSX1322);国家自然科学基金(No. 52005041,No. 52235009)
详细信息
    作者简介:

    张晓斌(1998—),男,山西晋中人,硕士研究生,2020年于中南大学获得学士学位,主要从事微纳制造及泵浦探测方面的研究。E-mail:3120200434@bit.edu.cn

    韩伟娜(1988—),女,博士,北京理工大学,激光微纳制造研究所副研究员,硕士生导师,主要从事超快激光微纳制造、可重构光子器件加工方面研究。E-mail:hanwn@bit.edu.cn

  • 中图分类号: TP394.1;TH691.9

Ultrafast laser nested Machining method for angle-multiplexed optically encrypted metasurface

Funds: Supported by Chongqing Natural Science Foundation of China (No. cstc2021jcyj-cxttX0003, No. CSTB2022NSCQ-MSX1322); National Natural Science Fundation of China (No. 52005041, No. 52235009)
More Information
  • 摘要:

    图案信息的光学加密在防伪、信息加密存储等方面具有广泛的应用,基于各向异性功能复用的结构色超表面得到发展。基于一维光栅衍射的光学加密超表面需要掩膜或单元结构的逐个加工而导致限制效率低下,传统烧蚀LIPSS所形成的结构均匀一致性差而影响器件性能。基于以上难题,提出了一种基于皮秒激光直写相变材料Ge2Sb2Te5得到的改性结构加工光学超表面的方法。首先表征所制备的GST改性光栅的色散性能,结合改性光栅的偏振依赖性,设计了角度复用的信息加密超表面,进一步展示了通过所提方法制备的超表面。实现了在自然光条件下加密,在强光条件下能够选择性解密读取并动态展示的性能。相比于传统加工方法,本方法可在一次直写过程中以同时打印的形式生成一系列光栅结构,提高了加工效率;同时加工得到的光栅结构均匀一致性好,提高了显色效果。利用取向角相差16°的改性光栅实现了无串扰的选择性信息读取,所得结构色均匀鲜艳。本文提出的加工策略在防伪、信息加密存储及可穿戴柔性显示设备等领域有深刻的应用前景。

     

  • 图 1  信息加密超表面的设计图。(a) 激光直写后GST的性质变化;(b) 激光直写GST的三种特征结构对应加工图案;(c) 信息加密超表面分别在自然光和强光下的效果。

    Figure 1.  Schematic representation of an information-encrypting metasurface. (a) The properties of GST after direct laser writing; (b) The three characteristic structures of laser direct writing GST correspond to the processing patterns; (c) The effect of the information encryption metasurface under natural light and strong light, respectively.

    图 2  改性光栅结构的表征。(a)100倍光镜下的改性光栅;(b) (c)改性光栅的SEM图;(d)改性光栅的AFM结果;(e)对应图(d)的曲线图。

    Figure 2.  Characterization of modified grating structures. (a) Modified grating under 100x optical microscope; (b) (c) SEM image of modified grating; (d) AFM result of modified grating; (e) The graph corresponding to (d).

    图 3  GST 改性光栅色散特性的表征。 (a) 偏振与改性结构之间的关系;(b)−(e)分别在 0°、10°、30° 和 40° 激光偏振条件下的改性结构。(f)用于表征色散能力的装置示意图;(g)−(i)RGB色彩的实拍展示;(j)拍照所获得的不同角度下的色散结果。

    Figure 3.  Characterization of the dispersion properties of GST-modified gratings. (a) Relationship between polarization and modified structure; (b)−(e) modified structure under laser polarization conditions of 0°, 10°, 30°, and 40°, respectively. (f) Schematic diagram of the device used to characterize the dispersion capability; (g)−(i) Real shot display of RGB color; (j) Dispersion results at different angles obtained by taking pictures.

    图 4  嵌套加工的信息加密超表面。 (a) 器件表面三种不同的改性结构排布方式的设计图。(b) 自然光条件下加工区域的照片。(c), (d) 嵌套区域和背景区域的光学显微镜图像。(e) 不同视角解码的图案信息。

    Figure 4.  Information-encrypting metasurfaces for nested processing. (a) Design diagrams of three different modified structure arrangements on the device surface. (b) Photograph of the processed area under natural light conditions. (c) and (d) are optical microscopy images of the nested and background regions, respectively. (e) Pattern information decoded from different views.

  • [1] MORKEL T, ELOFF J H P, OLIVIER M S. An overview of image steganography[C]. Proceedings of the ISSA 2005 New Knowledge Today Conference, 2005: 1-11. (查阅所有网上资料, 未找到本条文献出版社信息, 请联系作者确认)
    [2] TAMAMURA Y, MIYAJI G. Structural coloration of a stainless steel surface with homogeneous nanograting formed by femtosecond laser ablation[J]. Optical Materials Express, 2019, 9(7): 2902-2909. doi: 10.1364/OME.9.002902
    [3] YANG W H, XIAO SH M, SONG Q H, et al. All-dielectric metasurface for high-performance structural color[J]. Nature Communications, 2020, 11(1): 1864. doi: 10.1038/s41467-020-15773-0
    [4] WANG L CH, NG R J H, SAFARI DINACHALI S, et al. Large area plasmonic color palettes with expanded gamut using colloidal self-assembly[J]. ACS Photonics, 2016, 3(4): 627-633. doi: 10.1021/acsphotonics.5b00725
    [5] STEWART J W, AKSELROD G M, SMITH D R, et al. Toward multispectral imaging with colloidal metasurface pixels[J]. Advanced Materials, 2017, 29(6): 1602971. doi: 10.1002/adma.201602971
    [6] 李墨馨, 王丹燕, 张诚. 超构表面结构色的原理及应用[J]. 中国光学,2021,14(4):900-926. doi: 10.37188/CO.2021-0108

    LI M X, WANG D Y, ZHANG CH. Metasurface-based structural color: fundamentals and applications[J]. Chinese Optics, 2021, 14(4): 900-926. (in Chinese) doi: 10.37188/CO.2021-0108
    [7] HOU X Y, LI F ZH, SONG Y L, et al. Recent progress in responsive structural color[J]. The Journal of Physical Chemistry Letters, 2022, 13(13): 2885-2900. doi: 10.1021/acs.jpclett.1c04219
    [8] 李向军, 马婵, 严德贤, 等. 基于介质超表面角度复用的太赫兹增强吸收谱[J]. 中国光学,2022,15(4):731-739. doi: 10.37188/CO.2021-0197

    LI X J, MA CH, YAN D X, et al. Enhancement of terahertz absorption spectrum based on the angle multiplexing of the dielectric metasurface[J]. Chinese Optics, 2022, 15(4): 731-739. (in Chinese) doi: 10.37188/CO.2021-0197
    [9] DENG J, GAO F, YUAN P CH, et al. Bidirectional nanoprinting based on bilayer metasurfaces[J]. Optics Express, 2022, 30(1): 377-388. doi: 10.1364/OE.448136
    [10] LI ZH F, ZHANG D J, LIU J, et al. Polarization‐assisted visual secret sharing encryption in metasurface hologram[J]. Advanced Photonics Research, 2021, 2(11): 2100175. doi: 10.1002/adpr.202100175
    [11] SONG M W, WANG D, KUDYSHEV Z A, et al. Enabling optical steganography, data storage, and encryption with plasmonic colors[J]. Laser &Photonics Reviews, 2021, 15(3): 2000343.
    [12] DENG Z L, TU Q A, WANG Y J, et al. Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography[J]. Advanced Materials, 2021, 33(43): 2103472. doi: 10.1002/adma.202103472
    [13] LI Y H, ZHANG X Y, ZOU T T, et al. Vivid structural color macropatterns created by flexible nanopainting of ultrafast lasers[J]. ACS Applied Materials &Interfaces, 2022, 14(18): 21758-21767.
    [14] ZHENG P X, DAI Q, LI Z L, et al. Metasurface-based key for computational imaging encryption[J]. Science Advances, 2021, 7(21): eabg0363. doi: 10.1126/sciadv.abg0363
    [15] DENG Z L, WANG ZH Q, LI F J, et al. Multi-freedom metasurface empowered vectorial holography[J]. Nanophotonics, 2022, 11(9): 1725-1739. doi: 10.1515/nanoph-2021-0662
    [16] ZHANG Y N, SHI L, HU D J, et al. Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing[J]. Nanoscale Horizons, 2019, 4(3): 601-609. doi: 10.1039/C9NH00003H
    [17] LI CH, STOIAN R, CHENG G H. Laser-induced periodic surface structures with ultrashort laser pulse[J]. Chinese Optics, 2018, 11(1): 1-17. doi: 10.3788/co.20181101.0001
    [18] TAMAMURA Y, MIYAJI G. Structural coloration of a stainless steel surface with homogeneous nanograting formed by femtosecond laser ablation[J]. Optical Materials Express, 2019, 9(7): 2902-2909. doi: 10.1364/OME.9.002902
    [19] KEILMANN F, BAI Y H. Periodic surface structures frozen into CO2 laser-melted quartz[J]. Applied Physics A, 1982, 29(1): 9-18. doi: 10.1007/BF00618110
    [20] ABERE M J, ZHONG M L, KRÜGER J, et al. Ultrafast laser-induced morphological transformations[J]. MRS Bulletin, 2016, 41(12): 969-974. doi: 10.1557/mrs.2016.271
    [21] HUANG J X, XU K, HU J, et al. Self-aligned plasmonic lithography for maskless fabrication of large-area long-range ordered 2D nanostructures[J]. Nano Letters, 2022, 22(15): 6223-6228. doi: 10.1021/acs.nanolett.2c01740
    [22] LIU K, LIAN M, QIN K R, et al. Active tuning of electromagnetically induced transparency from chalcogenide-only metasurface[J]. Light:Advanced Manufacturing, 2021, 2(3): 19.
    [23] WANG Q, ROGERS E T F, GHOLIPOUR B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2016, 10(1): 60-65. doi: 10.1038/nphoton.2015.247
    [24] COTTON R L, SIEGEL J. Stimulated crystallization of melt-quenched Ge2Sb2Te5 films employing femtosecond laser double pulses[J]. Journal of Applied Physics, 2012, 112(12): 123520. doi: 10.1063/1.4770493
    [25] ARYANA K, GASKINS J T, NAG J, et al. Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices[J]. Nature Communications, 2021, 12(1): 774. doi: 10.1038/s41467-020-20661-8
    [26] SHIMOTSUMA Y, KAZANSKY P G, QIU J R, et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Physical Review Letters, 2003, 91(24): 247405. doi: 10.1103/PhysRevLett.91.247405
    [27] KOLOBOV A V, FONS P, FRENKEL A I, et al. Understanding the phase-change mechanism of rewritable optical media[J]. Nature Materials, 2004, 3(10): 703-708. doi: 10.1038/nmat1215
    [28] BONSE J, GRÄF S. Maxwell meets Marangoni—a review of theories on laser‐induced periodic surface structures[J]. Laser &Photonics Reviews, 2020, 14(10): 2000215.
  • 加载中
图(4)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  56
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-07
  • 录用日期:  2023-01-18
  • 网络出版日期:  2023-03-08

目录

    /

    返回文章
    返回