Ultrafast laser nested Machining method for angle-multiplexed optically encrypted metasurface
-
摘要:
图案信息的光学加密在防伪、信息加密存储等方面具有广泛的应用,基于各向异性功能复用的结构色超表面得到发展。基于一维光栅衍射的光学加密超表面需要掩膜或单元结构的逐个加工而导致限制效率低下,传统烧蚀LIPSS所形成的结构均匀一致性差而影响器件性能。基于以上难题,提出了一种基于皮秒激光直写相变材料Ge2Sb2Te5得到的改性结构加工光学超表面的方法。首先表征所制备的GST改性光栅的色散性能,结合改性光栅的偏振依赖性,设计了角度复用的信息加密超表面,进一步展示了通过所提方法制备的超表面。实现了在自然光条件下加密,在强光条件下能够选择性解密读取并动态展示的性能。相比于传统加工方法,本方法可在一次直写过程中以同时打印的形式生成一系列光栅结构,提高了加工效率;同时加工得到的光栅结构均匀一致性好,提高了显色效果。利用取向角相差16°的改性光栅实现了无串扰的选择性信息读取,所得结构色均匀鲜艳。本文提出的加工策略在防伪、信息加密存储及可穿戴柔性显示设备等领域有深刻的应用前景。
Abstract:Optical encryption materials for pattern information have been widely used in anti-counterfeiting, information encryption and storage, and structural color metasurface based on anisotropic functional reuse has been developed. The optical encrypted metasurface based on one-dimensional grating diffraction requires the processing of mask or unit structure one by one, resulting in low limiting efficiency. The structure uniformity of traditional ablated LIPSS is poor, which affects the device performance. Based on the above problems, an optical metasurface machining method based on the modified structure of picosecond laser direct writing phase change material Ge2Sb2Te5 is proposed. Firstly, the dispersion performance of the prepared GST modified gratings was characterized, and combined with the polarization dependence of the modified gratings, the angle-multiplexed information encryption metasurface was designed, and the metasurface prepared by the proposed method was further demonstrated. It realizes the performance of encryption under natural light, selective decryption reading and dynamic display under strong light. Compared with the traditional processing method, the proposed method can generate a series of grating structures in the form of simultaneous printing in a direct writing process, which improves the processing efficiency. At the same time, the grating structure obtained by processing is uniform and consistent, which improves the color rendering effect. The modified grating with 16° difference in orientation Angle realizes the selective information reading without crosstalk, and the obtained structure color is uniform and bright. The processing strategy proposed in this paper has a profound application prospect in the fields of anti-counterfeiting, information encryption storage and wearable flexible display devices. The processing strategy proposed in this paper has a profound application prospect in the fields of anti-counterfeiting information encryption storage and wearable flexible display devices.
-
Key words:
- ultrafast laser /
- phase change material /
- Information encryption /
- corrugated structure
-
图 1 信息加密超表面的设计图。(a) 激光直写后GST的性质变化;(b) 激光直写GST的三种特征结构对应加工图案;(c) 信息加密超表面分别在自然光和强光下的效果。
Figure 1. Schematic representation of an information-encrypting metasurface. (a) The properties of GST after direct laser writing; (b) The three characteristic structures of laser direct writing GST correspond to the processing patterns; (c) The effect of the information encryption metasurface under natural light and strong light, respectively.
图 3 GST 改性光栅色散特性的表征。 (a) 偏振与改性结构之间的关系;(b)−(e)分别在 0°、10°、30° 和 40° 激光偏振条件下的改性结构。(f)用于表征色散能力的装置示意图;(g)−(i)RGB色彩的实拍展示;(j)拍照所获得的不同角度下的色散结果。
Figure 3. Characterization of the dispersion properties of GST-modified gratings. (a) Relationship between polarization and modified structure; (b)−(e) modified structure under laser polarization conditions of 0°, 10°, 30°, and 40°, respectively. (f) Schematic diagram of the device used to characterize the dispersion capability; (g)−(i) Real shot display of RGB color; (j) Dispersion results at different angles obtained by taking pictures.
图 4 嵌套加工的信息加密超表面。 (a) 器件表面三种不同的改性结构排布方式的设计图。(b) 自然光条件下加工区域的照片。(c), (d) 嵌套区域和背景区域的光学显微镜图像。(e) 不同视角解码的图案信息。
Figure 4. Information-encrypting metasurfaces for nested processing. (a) Design diagrams of three different modified structure arrangements on the device surface. (b) Photograph of the processed area under natural light conditions. (c) and (d) are optical microscopy images of the nested and background regions, respectively. (e) Pattern information decoded from different views.
-
[1] MORKEL T, ELOFF J H P, OLIVIER M S. An overview of image steganography[C]. Proceedings of the ISSA 2005 New Knowledge Today Conference, 2005: 1-11. (查阅所有网上资料, 未找到本条文献出版社信息, 请联系作者确认) [2] TAMAMURA Y, MIYAJI G. Structural coloration of a stainless steel surface with homogeneous nanograting formed by femtosecond laser ablation[J]. Optical Materials Express, 2019, 9(7): 2902-2909. doi: 10.1364/OME.9.002902 [3] YANG W H, XIAO SH M, SONG Q H, et al. All-dielectric metasurface for high-performance structural color[J]. Nature Communications, 2020, 11(1): 1864. doi: 10.1038/s41467-020-15773-0 [4] WANG L CH, NG R J H, SAFARI DINACHALI S, et al. Large area plasmonic color palettes with expanded gamut using colloidal self-assembly[J]. ACS Photonics, 2016, 3(4): 627-633. doi: 10.1021/acsphotonics.5b00725 [5] STEWART J W, AKSELROD G M, SMITH D R, et al. Toward multispectral imaging with colloidal metasurface pixels[J]. Advanced Materials, 2017, 29(6): 1602971. doi: 10.1002/adma.201602971 [6] 李墨馨, 王丹燕, 张诚. 超构表面结构色的原理及应用[J]. 中国光学,2021,14(4):900-926. doi: 10.37188/CO.2021-0108LI M X, WANG D Y, ZHANG CH. Metasurface-based structural color: fundamentals and applications[J]. Chinese Optics, 2021, 14(4): 900-926. (in Chinese) doi: 10.37188/CO.2021-0108 [7] HOU X Y, LI F ZH, SONG Y L, et al. Recent progress in responsive structural color[J]. The Journal of Physical Chemistry Letters, 2022, 13(13): 2885-2900. doi: 10.1021/acs.jpclett.1c04219 [8] 李向军, 马婵, 严德贤, 等. 基于介质超表面角度复用的太赫兹增强吸收谱[J]. 中国光学,2022,15(4):731-739. doi: 10.37188/CO.2021-0197LI X J, MA CH, YAN D X, et al. Enhancement of terahertz absorption spectrum based on the angle multiplexing of the dielectric metasurface[J]. Chinese Optics, 2022, 15(4): 731-739. (in Chinese) doi: 10.37188/CO.2021-0197 [9] DENG J, GAO F, YUAN P CH, et al. Bidirectional nanoprinting based on bilayer metasurfaces[J]. Optics Express, 2022, 30(1): 377-388. doi: 10.1364/OE.448136 [10] LI ZH F, ZHANG D J, LIU J, et al. Polarization‐assisted visual secret sharing encryption in metasurface hologram[J]. Advanced Photonics Research, 2021, 2(11): 2100175. doi: 10.1002/adpr.202100175 [11] SONG M W, WANG D, KUDYSHEV Z A, et al. Enabling optical steganography, data storage, and encryption with plasmonic colors[J]. Laser &Photonics Reviews, 2021, 15(3): 2000343. [12] DENG Z L, TU Q A, WANG Y J, et al. Vectorial compound metapixels for arbitrary nonorthogonal polarization steganography[J]. Advanced Materials, 2021, 33(43): 2103472. doi: 10.1002/adma.202103472 [13] LI Y H, ZHANG X Y, ZOU T T, et al. Vivid structural color macropatterns created by flexible nanopainting of ultrafast lasers[J]. ACS Applied Materials &Interfaces, 2022, 14(18): 21758-21767. [14] ZHENG P X, DAI Q, LI Z L, et al. Metasurface-based key for computational imaging encryption[J]. Science Advances, 2021, 7(21): eabg0363. doi: 10.1126/sciadv.abg0363 [15] DENG Z L, WANG ZH Q, LI F J, et al. Multi-freedom metasurface empowered vectorial holography[J]. Nanophotonics, 2022, 11(9): 1725-1739. doi: 10.1515/nanoph-2021-0662 [16] ZHANG Y N, SHI L, HU D J, et al. Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing[J]. Nanoscale Horizons, 2019, 4(3): 601-609. doi: 10.1039/C9NH00003H [17] LI CH, STOIAN R, CHENG G H. Laser-induced periodic surface structures with ultrashort laser pulse[J]. Chinese Optics, 2018, 11(1): 1-17. doi: 10.3788/co.20181101.0001 [18] TAMAMURA Y, MIYAJI G. Structural coloration of a stainless steel surface with homogeneous nanograting formed by femtosecond laser ablation[J]. Optical Materials Express, 2019, 9(7): 2902-2909. doi: 10.1364/OME.9.002902 [19] KEILMANN F, BAI Y H. Periodic surface structures frozen into CO2 laser-melted quartz[J]. Applied Physics A, 1982, 29(1): 9-18. doi: 10.1007/BF00618110 [20] ABERE M J, ZHONG M L, KRÜGER J, et al. Ultrafast laser-induced morphological transformations[J]. MRS Bulletin, 2016, 41(12): 969-974. doi: 10.1557/mrs.2016.271 [21] HUANG J X, XU K, HU J, et al. Self-aligned plasmonic lithography for maskless fabrication of large-area long-range ordered 2D nanostructures[J]. Nano Letters, 2022, 22(15): 6223-6228. doi: 10.1021/acs.nanolett.2c01740 [22] LIU K, LIAN M, QIN K R, et al. Active tuning of electromagnetically induced transparency from chalcogenide-only metasurface[J]. Light:Advanced Manufacturing, 2021, 2(3): 19. [23] WANG Q, ROGERS E T F, GHOLIPOUR B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2016, 10(1): 60-65. doi: 10.1038/nphoton.2015.247 [24] COTTON R L, SIEGEL J. Stimulated crystallization of melt-quenched Ge2Sb2Te5 films employing femtosecond laser double pulses[J]. Journal of Applied Physics, 2012, 112(12): 123520. doi: 10.1063/1.4770493 [25] ARYANA K, GASKINS J T, NAG J, et al. Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices[J]. Nature Communications, 2021, 12(1): 774. doi: 10.1038/s41467-020-20661-8 [26] SHIMOTSUMA Y, KAZANSKY P G, QIU J R, et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Physical Review Letters, 2003, 91(24): 247405. doi: 10.1103/PhysRevLett.91.247405 [27] KOLOBOV A V, FONS P, FRENKEL A I, et al. Understanding the phase-change mechanism of rewritable optical media[J]. Nature Materials, 2004, 3(10): 703-708. doi: 10.1038/nmat1215 [28] BONSE J, GRÄF S. Maxwell meets Marangoni—a review of theories on laser‐induced periodic surface structures[J]. Laser &Photonics Reviews, 2020, 14(10): 2000215. -