留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适用于近地面成像的自适应光学系统研究

王海铭 权佳宁 葛宝臻

王海铭, 权佳宁, 葛宝臻. 适用于近地面成像的自适应光学系统研究[J]. 中国光学(中英文), 2023, 16(4): 843-852. doi: 10.37188/CO.2022-0230
引用本文: 王海铭, 权佳宁, 葛宝臻. 适用于近地面成像的自适应光学系统研究[J]. 中国光学(中英文), 2023, 16(4): 843-852. doi: 10.37188/CO.2022-0230
WANG Hai-ming, QUAN Jia-ning, GE Bao-zhen. An adaptive optics system suitable for near-ground imaging[J]. Chinese Optics, 2023, 16(4): 843-852. doi: 10.37188/CO.2022-0230
Citation: WANG Hai-ming, QUAN Jia-ning, GE Bao-zhen. An adaptive optics system suitable for near-ground imaging[J]. Chinese Optics, 2023, 16(4): 843-852. doi: 10.37188/CO.2022-0230

适用于近地面成像的自适应光学系统研究

基金项目: 国家自然科学基金项目(No. 61535008)
详细信息
    作者简介:

    王海铭(1996—),男,吉林白城人,硕士研究生,2019年于长春理工大学获得学士学位,现就读于天津大学精密仪器与光电子工程学院,攻读光学工程学术硕士学位,主要研究方向为光学成像技术。E-mail:1437177122@qq.com

    权佳宁(1993—),男,河北沧州人,博士研究生,2019年于河北工业大学获得硕士学位,现就读于天津大学精密仪器与光电子工程学院,攻读光学工程学术博士学位,主要从事深度学习、光电检测方面的研究。E-mail:jianing_quan@tju.edu.cn

    葛宝臻(1964—),男,内蒙古卓资人,博士,教授,博士生导师,主要从事三维彩色数字成像技术、光电检测技术、激光粒子测量方面的研究。E-mail:gebz163@163.com

  • 中图分类号: O43

An adaptive optics system suitable for near-ground imaging

Funds: Supported by National Natural Science Foundation of China (No. 61535008)
More Information
  • 摘要:

    为了克服近地面湍流对几十到几百米中长成像距离下光学系统成像质量的不利影响,设计了基于长焦距望远物镜和一体化自适应模块的光学成像系统。在系统中心高度1.9 m及50~200 m的成像距离下,开展了分辨率板的室外成像实验。实验结果表明,在近地面的50~200 m中长距离下湍流对成像质量的影响明显,所搭建的实验系统能够在不同距离下有效克服湍流影响,提高图像的分辨率和清晰度的一致性,但随着成像距离的增加,湍流影响的增大,系统的校正能力降低,成像质量下降。系统在100 m成像距离下的成像分辨率能够达到0.5 mm。在200 m的距离对混凝土模型表面裂缝进行了观测及校正实验,实验结果表明,系统能够抑制湍流影响,提高裂缝图像的清晰度,验证了系统的实际应用能力。

     

  • 图 1  系统结构原理图

    Figure 1.  Schematic diagram of the system structure

    图 2  S-H波前传感器原理示意图。(a)光路示意图;(b)光斑图

    Figure 2.  Schematic diagram of S-H wavefront sensor. (a) Schematic diagram of optical path; (b) spot diagram

    图 3  自适应光学成像系统实物图。(a)一体化成像模块;(b)成像系统

    Figure 3.  Physical map of the adaptive optics imaging system. (a) Integrated imaging module; (b) imaging system

    图 4  室外实验现场照片

    Figure 4.  Photo of the outdoor experiment site

    图 5  不同距离处校正前后的分辨率板图像,从左到右分别为第1、6、11、16和21帧图像。(a)50 m校正前;(b)50 m校正后;(c)100 m校正前;(d)100 m校正后;(e)150 m校正前;(f)150 m校正后;(g)200 m校正前;(h)200 m校正后

    Figure 5.  The resolution plate images before and after correction at different distances. From left to right are the 1st, 6th, 11th, 16th and 21st frame images. (a) Before and (b) after correction with 50 m imaging range; (c) before and (d) after correction with 100 m imaging range; (e) before and (f) after correction with 150 m imaging range; (g) before and (h) after correction with 200 m imaging range

    图 6  不同距离处校正前后的波前PV值及RMS值的曲线图。(a~d)50 m、100 m、150 m和200 m的PV;(e~h)50 m、100 m、150 m和200 m的RMS

    Figure 6.  Curves of PV and RMS values of the wavefront before and after correction at different distances. (a~d) PV values at 50 m, 100 m, 150 m and 200 m; (e~h) RMS values at 50 m, 100 m, 150 m and 200 m

    图 7  对应图5(d)第1帧图像的局部放大图

    Figure 7.  Partial enlarged image corresponding to the first frame image in Figure. 5(d)

    图 8  混凝土模型室外实验现场照片

    Figure 8.  Outdoor experiment site photo of concrete model

    图 9  200 m处校正前后的混凝土模型图像,从左到右分别为第1、6、11、16和21帧图像。(a)校正前及(b)校正后结果

    Figure 9.  Concrete model images before and after correction at 200 m. From left to right are the 1st, 6th, 11th, 16th and 21st frame images. (a) Before and (b) after correction results

    表  1  关键器件参数

    Table  1.   Parameters of key devices

    DeviceParameterValue
    Telescope objectiveAperture/mm356
    Focal length/mm3556
    DMAperture/mm13.5
    Number of drives97
    Drive interval/mm1.5
    S-H WFSAperture/mm5.85
    Number of sub-apertures1280
    Frame rate/fps100
    Wavelength range/nm400~1100
    Microlens focal length/mm3.5
    CCDHorizontal and vertical pixels2560×2048
    Frame rate/fps62
    Pixel size/µm5
    下载: 导出CSV

    表  2  透镜及棱镜的主要参数

    Table  2.   Main parameters of the lens and prism

    Optical elementFocal length/mmAperture/mmMaterial
    L19030H-K9、H-ZF2
    L25030H-K9、H-ZF2
    L310025.4H-K9、H-ZF2
    L46020H-K9、H-ZF2
    BS25.4K9
    下载: 导出CSV

    表  3  不同成像距离的分辨率板在校正前后的PV及RMS均值

    Table  3.   PV and RMS mean values of the resolution plate at different distances before and after correction

    Distance/mPV /μmRMS /μm
    BeforeAfterPct/%BeforeAfterPct/%
    504.7031.74562.891.2180.38468.47
    1006.0772.57957.561.5190.64357.67
    1508.8223.86356.211.9270.93651.43
    20031.3616.5847.157.8264.10547.55
    下载: 导出CSV

    表  4  不同距离的分辨率板在校正前后的BRISQUE及PIQE均值

    Table  4.   BRISQUE and PIQE mean values of the resolution plate at different distances before and after correction

    Distance/mBRISQUEPIQE
    BeforeAfterPct/%BeforeAfterPct/%
    5016.7911.6130.8313.039.3828.01
    10023.3717.6324.5622.0516.9922.92
    15032.3120.5336.4627.1719.926.78
    20045.6336.220.6640.4235.113.16
    下载: 导出CSV

    表  5  200 m处的混凝土模型在校正前后的PV及RMS均值

    Table  5.   PV and RMS mean values of the concrete model at 200 m before and after correction

    Distance/mPV /μmRMS /μm
    BeforeAfterPct/%BeforeAfterPct/%
    20017.5984.55674.11 4.4110.91679.23
    下载: 导出CSV

    表  6  200 m处的混凝土模型在校正前后的BRISQUE及PIQE均值

    Table  6.   BRISQUE and PIQE mean values of the concrete model at 200 m before and after correction

    Distance/mBRISQUEPIQE
    BeforeAfterPct/%BeforeAfterPct/%
    20038.6521.3444.7939.9524.7238.12
    下载: 导出CSV
  • [1] 陈满军, 张辉霖, 吴玉龙, 等. 基于机器视觉的建筑结构裂缝病害在线监测系统[J]. 工程质量,2022,40(7):48-51. doi: 10.3969/j.issn.1671-3702.2022.07.012

    CHEN M J, ZHANG H L, WU Y L, et al. On-line monitoring system for structural cracks and diseases based on machine vision[J]. Construction Quality, 2022, 40(7): 48-51. (in Chinese) doi: 10.3969/j.issn.1671-3702.2022.07.012
    [2] 赵子云, 顾虎, 马文超, 等. 自适应光学系统误差分析与参数优化研究[J]. 液晶与显示,2021,36(5):663-672. doi: 10.37188/CJLCD.2020-0356

    ZHAO Z Y, GU H, MA W CH, et al. Error budget and parameters optimization of adaptive optics system[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(5): 663-672. (in Chinese) doi: 10.37188/CJLCD.2020-0356
    [3] KONYAEV P A. Computer simulation of adaptive optics for laser systems in atmospheric applications[J]. Optoelectronics,Instrumentation and Data Processing, 2012, 48(2): 119-125. doi: 10.3103/S8756699012020021
    [4] 姜文汉. 自适应光学发展综述[J]. 光电工程,2018,45(3):170489.

    JIANG W H. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 2018, 45(3): 170489. (in Chinese)
    [5] 张志高, 胡启立, 马文超, 等. 高效率可变磁阻音圈驱动器的设计及性能研究[J]. 液晶与显示,2022,37(1):21-28. doi: 10.37188/CJLCD.2021-0272

    ZHANG ZH G, HU Q L, MA W CH, et al. Design and performance research of high efficiency variable reluctance voice coil actuator[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(1): 21-28. (in Chinese) doi: 10.37188/CJLCD.2021-0272
    [6] 张鸿州, 朱智康, 黄凯, 等. 光学相位分布曲面的自适应调制系统[J]. 液晶与显示,2021,36(4):522-528. doi: 10.37188/CJLCD.2020-0327

    ZHANG H ZH, ZHU ZH K, HUANG K. et al. Adaptive modulation system for optical phase profile[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(4): 522-528. (in Chinese) doi: 10.37188/CJLCD.2020-0327
    [7] 张天宇, 王钢, 张熙, 等. 基于焦面复制方法的自适应光学系统静态像差校正技术[J]. 中国光学,2022,15(3):545-551. doi: 10.37188/CO.2021-0182

    ZHANG T Y, WANG G, ZHANG X, et al. Staticaberration correction technique for adaptive optics system based on focal-plane copy approach[J]. Chinese Optics, 2022, 15(3): 545-551. (in Chinese) doi: 10.37188/CO.2021-0182
    [8] 朱沁雨, 韩国庆, 彭建涛, 等. 双波长视网膜成像自适应光学系统的轴向色差补偿方法[J]. 中国光学,2022,15(1):79-89. doi: 10.37188/CO.EN.2021-0009

    ZHU Q Y, HAN G Q, PENG J T, et al. Longitudinal chromatic aberration compensation method for dual-wavelength retinal imaging adaptive optics systems[J]. Chinese Optics, 2022, 15(1): 79-89. (in Chinese) doi: 10.37188/CO.EN.2021-0009
    [9] TAHERI M, MCCONNACHIE A W, TURRI P, et al. Optimal differential astrometry for multiconjugate adaptive optics. i. astrometric distortion mapping using on-sky GeMS observations of NGC 6723[J]. The Astronomical Journal, 2022, 163(4): 187. doi: 10.3847/1538-3881/ac5747
    [10] BOND C Z, CETRE S, LILLEY S, et al. Adaptive optics with an infrared pyramid wavefront sensor at Keck[J]. Journal of Astronomical Telescopes,Instruments,and Systems, 2020, 6(3): 039003.
    [11] MELLO A J T S, OROSKI E, FRENCL V B, et al. System identification and tuning applied to pseudo open loop control in multi-conjugate adaptive optics[J]. Journal of Astrophysics and Astronomy, 2022, 43(2): 61. doi: 10.1007/s12036-022-09846-3
    [12] RAO CH H, RAO X J, DU ZH M, et al. EAST-educational adaptive-optics solar telescope[J]. Research in Astronomy and Astrophysics, 2022, 22(6): 065003. doi: 10.1088/1674-4527/ac65e8
    [13] STOTTS L B, ANDREWS L C. Adaptive optics model characterizing turbulence mitigation for free space optical communications link budgets[J]. Optics Express, 2021, 29(13): 20307-20321. doi: 10.1364/OE.430554
    [14] RUI D M, LIU CH, CHEN M, et al. Probability enhancement of fiber coupling efficiency under turbulence with adaptive optics compensation[J]. Optical Fiber Technology, 2020, 60: 102343. doi: 10.1016/j.yofte.2020.102343
    [15] SEGEL M, GLADYSZ S. Optimal, blind-search modal wavefront correction in atmospheric turbulence. Part I: simulations[J]. Optics Express, 2021, 29(2): 805-820. doi: 10.1364/OE.408682
    [16] LAIDLAW D J, REEVES A P, SINGHAL H, et al. Characterizing turbulence profile layers through celestial single-source observations[J]. Applied Optics, 2022, 61(2): 498-504. doi: 10.1364/AO.443698
    [17] 陈欣欣, 苑克娥, 时东锋, 等. 大气湍流对空基光学成像系统影响的仿真研究[J]. 光学学报,2022,42(18):1801002. doi: 10.3788/AOS202242.1801002

    CHEN X X, YUAN K E, SHI D F, et al. Simulation study on effect of atmospheric turbulence on space-based optical imaging system[J]. Acta Optica Sinica, 2022, 42(18): 1801002. (in Chinese) doi: 10.3788/AOS202242.1801002
    [18] LI S S, DU P Y, DING L, et al. Study on the correction method of the deformable mirror surface profile[J]. Optik, 2018, 171: 600-604. doi: 10.1016/j.ijleo.2018.06.106
    [19] 潘国涛, 闫钰锋, 于信, 等. 矩形大口径激光光束质量评价光学系统设计[J]. 中国光学,2022,15(2):306-317. doi: 10.37188/CO.2021-0130

    PAN G T, YAN Y F, YU X, et al. Design of optical system for quality evaluation of a large rectangular aperture laser beam[J]. Chinese Optics, 2022, 15(2): 306-317. (in Chinese) doi: 10.37188/CO.2021-0130
    [20] 徐斌. 中远距离高分辨率成像技术与实验研究[D]. 天津: 天津大学, 2019.

    XU B. Research on medium and long distance high-resolution imaging technology and experiment[D]. Tianjin: Tianjin University, 2019. (in Chinese)
    [21] 孙飞. 液晶—变形镜的高低阶式自适应光学系统研究[D]. 长春: 中国科学院大学, 2017.

    SUN F. Study on high-low order adaptive optics system based on liquid crystal wavefront corrector and deformable mirror[D]. Changchun: University of Chinese Academy of Sciences, 2017. (in Chinese)
    [22] 张娜娜, 张燕革, 单欣, 等. 星地链路中的主动式自适应光学系统室内实验[J]. 光通信技术,2017,41(11):42-45. doi: 10.13921/j.cnki.issn1002-5561.2017.11.011

    ZHANG N N, ZHANG Y G, SHAN X, et al. Laboratory experiment of active adaptive optics in satellite-to-ground link[J]. Optical Communication Technology, 2017, 41(11): 42-45. (in Chinese) doi: 10.13921/j.cnki.issn1002-5561.2017.11.011
    [23] ZHANG Y, CHANDLER D M. No-reference image quality assessment based on log-derivative statistics of natural scenes[J]. Journal of Electronic Imaging, 2013, 22(4): 043025. doi: 10.1117/1.JEI.22.4.043025
    [24] VENKATANATH N, PRANEETH D, BH M C, et al. . Blind image quality evaluation using perception based features[C]. 2015 Twenty First National Conference on Communications (NCC), IEEE, 2015: 1-6.
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  453
  • HTML全文浏览量:  177
  • PDF下载量:  268
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-09
  • 修回日期:  2022-12-01
  • 网络出版日期:  2023-02-07

目录

    /

    返回文章
    返回