留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红外辐射测量系统的快速宽动态非均匀性校正算法

李周 张尧禹 周慧 孔祥龙 赵新宇 李祥琛

李周, 张尧禹, 周慧, 孔祥龙, 赵新宇, 李祥琛. 红外辐射测量系统的快速宽动态非均匀性校正算法[J]. 中国光学(中英文), 2024, 17(6): 1359-1367. doi: 10.37188/CO.2023-0076
引用本文: 李周, 张尧禹, 周慧, 孔祥龙, 赵新宇, 李祥琛. 红外辐射测量系统的快速宽动态非均匀性校正算法[J]. 中国光学(中英文), 2024, 17(6): 1359-1367. doi: 10.37188/CO.2023-0076
LI Zhou, ZHANG Yao-yu, ZHOU Hui, KONG Xiang-long, ZHAO Xin-yu, LI Xiang-chen. Rapid wide dynamic non-uniformity correction algorithm for infrared radiation measurement system[J]. Chinese Optics, 2024, 17(6): 1359-1367. doi: 10.37188/CO.2023-0076
Citation: LI Zhou, ZHANG Yao-yu, ZHOU Hui, KONG Xiang-long, ZHAO Xin-yu, LI Xiang-chen. Rapid wide dynamic non-uniformity correction algorithm for infrared radiation measurement system[J]. Chinese Optics, 2024, 17(6): 1359-1367. doi: 10.37188/CO.2023-0076

红外辐射测量系统的快速宽动态非均匀性校正算法

cstr: 32171.14.CO.2023-0076
基金项目: 国家自然科学基金(No. 62105330)
详细信息
    作者简介:

    李 周(1989—),男,山东临沂人,博士,2018年于中国科学院大学获得博士学位,主要从事红外辐射定标,红外辐射特性测量等方面的工作

    张尧禹(1973—),辽宁黑山人,工学博士、研究员、博士生导师,2003年于中国科学院长春光学精密机械与物理研究所获得机械制造及其自动化专业博士学位,主要研究方向为:靶场跟踪、靶场测量、光电瞄准、单兵系统等。E-mail:13604336836yaoyu@sina.com

  • 中图分类号: TN222

Rapid wide dynamic non-uniformity correction algorithm for infrared radiation measurement system

Funds: Supported by National Natural Science Foundation of China (No. 62105330)
More Information
  • 摘要:

    本文针对红外辐射测量系统需要积分时间连续变化的需求,提出一种快速宽动态的非均匀性校正算法。该算法考虑了积分时间效应和光学系统杂散辐射的影响,并利用25 mm口径的制冷型中波红外辐射特性测量系统进行试验验证。将本文所提算法与经典算法进行对比,结果表明,校正效率较传统非均匀性校正算法提高了3.4倍。本文还利用剩余残差评价原始图像以及两种算法的图像校正效果,利用多个积分时间(0.6 ms,3 ms和3.5 ms)模拟连续变化的积分。结果显示本文算法在各个积分时间下剩余残差均表现稳定且校正图像都具有良好的校正效果。

     

  • 图 1  制冷型红外测量焦平面像素响应模型

    Figure 1.  Response model for a cooled infrared pixel

    图 2  系统装置示意图

    Figure 2.  Schematic diagram of experimental setup

    图 3  试验场景图

    Figure 3.  Experiment scenario

    图 4  在不同积分时间下,辐射亮度与系统灰度的关系

    Figure 4.  The relationship between radiation brightness and system grayscale at different integration times

    图 5  在不同黑体温度下积分时间与系统灰度的关系

    Figure 5.  The relationship between integration time and system grayscale at different blackbody temperatures

    图 6  定标参数的三维分布

    Figure 6.  Three-dimensional distribution of calibration parameters

    图 7  坏元补偿效果

    Figure 7.  Schematic diagram of bad pixels compensation effect

    图 8  快速宽动态非均匀性算法的效率分析

    Figure 8.  Efficiency analysis of rapid wide dynamic non-uniformity algorithm

    图 9  原始图像、传统NUC以及本文所提算法不同积分时间的校正残差对比

    Figure 9.  Comparison of corrected residuals of the original image, conventional NUC, and the algorithms mentioned in this paper at different integration times

    图 10  在相同积分时间(0.6 ms)的不同算法的校正效果对比。(a)原始图像;(b)传统NUC算法结果;(c)本文所提NUC算法结果

    Figure 10.  Comparison of correction effects by different algorithms with the same integration time (0.6 ms). (a) Raw image; (b) the traditional NUC algorithm results; (c) the proposed NUC algorithm results

    图 11  不同积分时间下不同算法的校正效果比较。(a)t=3 ms;(b)t=3.1 ms;(c)t=3.5 ms。(i)原始图像;(ii)传统NUC算法结果;(iii)本文所提NUC算法结果

    Figure 11.  Comparison of calibration effects by different algorithms with different integration times. (a) t=3 ms; (b) t=3.1 ms; (c) t=3.5 ms. (i) Raw image; (ii) traditional NUC algorithm results; (iii) the proposed NUC algorithm results

    表  1  系统的基本参数

    Table  1.   Basic parameters of the proposed infrared system

    Parameter Value
    Response band/μm 3.7~4.8
    Pixel numbers 320×256
    Pixel size/μm 30
    NETD/mK 15
    Number resolution (bit) 14
    Cooled temperature/K 77
    Focal length/mm 50
    F/# 2
    下载: 导出CSV

    表  2  辐射定标参数的平均值

    Table  2.   Average value of radiometric calibration parameters

    Parameters Value
    $ \overline {{R_n}} $ 573
    $ \overline {{d_t}} $ 192
    $ \overline {{d_{{{in}}}}} $ 1251
    下载: 导出CSV
  • [1] OCHS M, SCHULZ A, BAUER H J. High dynamic range infrared thermography by pixelwise radiometric self calibration[J]. Infrared Physics & Technology, 2010, 53(2): 112-119.
    [2] JI J K, YOON J R, CHO K. Nonuniformity correction scheme for an infrared camera including the background effect due to camera temperature variation[J]. Optical Engineering, 2000, 39(4): 936-940. doi: 10.1117/1.602452
    [3] 霍晓江, 郭肇敏, 张志恒, 等. 基于积分时间的IRFPA非均匀性校正方法研究[J]. 红外与激光工程,2008,37(S2):604-607.

    HUO X J, GUO ZH M, ZHANG ZH H, et al. Research on nonuniformity correction of IRFPA based on integration time[J]. Infrared and Laser Engineering, 2008, 37(S2): 604-607. (in Chinese)
    [4] 冷寒冰, 汤心溢, 彭鼎祥. 基于积分时间调整的红外焦平面阵列非均匀校正算法研究[J]. 红外与毫米波学报,2007,26(4):246-250.

    LENG H B, TANG X Y, PENG D X. Research on nonuniformity correction of IRFPA based on integral time adjust[J]. Journal of Infrared and Millimeter Waves, 2007, 26(4): 246-250. (in Chinese)
    [5] 陈世伟, 杨小冈, 张胜修, 等. 基于变积分时间的红外焦平面非均匀性校正算法研究[J]. 光子学报,2013,42(4):475-479. doi: 10.3788/gzxb20134204.0475

    CHEN SH W, YANG X G, ZHANG SH X, et al. Research on nonuniformity correction algorithm of IRFPA based on adjusting integral time[J]. Acta Photonica Sinica, 2013, 42(4): 475-479. (in Chinese) doi: 10.3788/gzxb20134204.0475
    [6] HUO L J, ZHOU D B, WANG D J, et al. Staircase-scene-based nonuniformity correction in aerial point target detection systems[J]. Applied Optics, 2016, 55(25): 7149-7156. doi: 10.1364/AO.55.007149
    [7] ZUO CH, CHEN Q, GU G H, et al. New temporal high-pass filter nonuniformity correction based on bilateral filter[J]. Optical Review, 2011, 18(2): 197-202. doi: 10.1007/s10043-011-0042-y
    [8] 李周, 乔彦峰, 常松涛, 等. 宽动态范围红外辐射测量系统快速定标算法[J]. 红外与激光工程,2017,46(6):0617003. doi: 10.3788/IRLA201746.0617003

    LI ZH, QIAO Y F, CHANG S T, et al. High-speed calibration algorithm for wide dynamic range infrared radiometric system[J]. Infrared and Laser Engineering, 2017, 46(6): 0617003. (in Chinese) doi: 10.3788/IRLA201746.0617003
    [9] MOONEY J M, SHEPPARD F D, EWING W S, et al. Responsivity nonuniformity limited performance of infrared staring cameras[J]. Optical Engineering, 1989, 28(11): 281151.
    [10] 李周. 地基靶场红外辐射特性测量系统宽动态辐射测量研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2018.

    LI ZH. Research on ground-based infrared characteristics measurement systems in wide dynamic range radiometry[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2018. (in Chinese)
    [11] JIN Y, JIANG J, ZHANG G J. Three-step nonuniformity correction for a highly dynamic intensified charge-coupled device star sensor[J]. Optics Communications, 2012, 285(7): 1753-1758. doi: 10.1016/j.optcom.2011.12.043
    [12] 李周, 李铭扬, 余毅, 等. 基于二次修正提高宽动态红外辐射测量精度[J]. 红外与激光工程,2020,49(10):20200142.

    LI ZH, LI M Y, YU Y, et al. Improvement of wide dynamic infrared radiation measurement accuracy based on dual correction[J]. Infrared and Laser Engineering, 2020, 49(10): 20200142. (in Chinese)
    [13] CHANG S T, ZHANG Y Y, SUN ZH Y, et al. Method to remove the effect of ambient temperature on radiometric calibration[J]. Applied Optics, 2014, 53(27): 6274-6279. doi: 10.1364/AO.53.006274
    [14] MONTANARO M, LUNSFORD A, TESFAYE Z, et al. Radiometric calibration methodology of the Landsat 8 thermal infrared sensor[J]. Remote Sensing, 2014, 6(9): 8803-8821. doi: 10.3390/rs6098803
    [15] SUN ZH Y, CHANG S T, ZHU W. Radiometric calibration method for large aperture infrared system with broad dynamic range[J]. Applied Optics, 2015, 54(15): 4659-4666. doi: 10.1364/AO.54.004659
    [16] CAO Y P, TISSE C L. Single-image-based solution for optics temperature-dependent nonuniformity correction in an uncooled long-wave infrared camera[J]. Optics Letters, 2014, 39(3): 646-648. doi: 10.1364/OL.39.000646
    [17] ZHOU D B, WANG D J, HUO L J, et al. Scene-based nonuniformity correction for airborne point target detection systems[J]. Optics Express, 2017, 25(13): 14210-14226. doi: 10.1364/OE.25.014210
    [18] NUGENT P W, SHAW J A, PUST N J. Radiometric calibration of infrared imagers using an internal shutter as an equivalent external blackbody[J]. Optical Engineering, 2014, 53(12): 123106. doi: 10.1117/1.OE.53.12.123106
    [19] WOLF A, REDLICH R, FIGUEROA M, et al. On-line nonuniformity and temperature compensation of uncooled IRFPAs using embedded digital hardware[J]. Proceedings of SPIE, 2013, 8868: 88680H. doi: 10.1117/12.2024241
    [20] TORRES S N, PEZOA J E, HAYAT M M. Scene-based nonuniformity correction for focal plane arrays by the method of the inverse covariance form[J]. Applied Optics, 2003, 42(29): 5872-5881. doi: 10.1364/AO.42.005872
    [21] KIM S. Two-point correction and minimum filter-based nonuniformity correction for scan-based aerial infrared cameras[J]. Optical Engineering, 2012, 51(10): 106401. doi: 10.1117/1.OE.51.10.106401
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  101
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-05-26
  • 网络出版日期:  2024-08-27

目录

    /

    返回文章
    返回