留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

痕量气体掩星探测高光谱成像光谱仪光学系统设计

孔相金 李博 李寒霜 王晓旭 顾国超 蒋雪

孔相金, 李博, 李寒霜, 王晓旭, 顾国超, 蒋雪. 痕量气体掩星探测高光谱成像光谱仪光学系统设计[J]. 中国光学(中英文), 2024, 17(3): 661-673. doi: 10.37188/CO.2023-0153
引用本文: 孔相金, 李博, 李寒霜, 王晓旭, 顾国超, 蒋雪. 痕量气体掩星探测高光谱成像光谱仪光学系统设计[J]. 中国光学(中英文), 2024, 17(3): 661-673. doi: 10.37188/CO.2023-0153
KONG Xiang-jin, LI Bo, LI Han-shuang, WANG Xiao-xu, GU Guo-chao, JIANG Xue. Optical system design of hyperspectral imaging spectrometer for trace gas occultation detection[J]. Chinese Optics, 2024, 17(3): 661-673. doi: 10.37188/CO.2023-0153
Citation: KONG Xiang-jin, LI Bo, LI Han-shuang, WANG Xiao-xu, GU Guo-chao, JIANG Xue. Optical system design of hyperspectral imaging spectrometer for trace gas occultation detection[J]. Chinese Optics, 2024, 17(3): 661-673. doi: 10.37188/CO.2023-0153

痕量气体掩星探测高光谱成像光谱仪光学系统设计

基金项目: 国家重点研发计划(No.2022YFB3903202);国家自然科学基金(No.62205330)
详细信息
    作者简介:

    李博(1981—),男,吉林梨树人,博士,研究员,2011年于中国科学院大学获得博士学位,主要从事高光谱遥感总体设计方面的研究。E-mail:libo0008429@163.com

  • 中图分类号: TP394.1;TH691.9

Optical system design of hyperspectral imaging spectrometer for trace gas occultation detection

Funds: Supported by National Key Research and Development Program of China (No.2022YFB3903202); National Natural Science Foundation of China (No. 62205330)
More Information
  • 摘要:

    痕量气体作为大气的重要成份,对地球的生态起着重要作用。为了实现宽波段、高光谱全天时连续测量,本文设计了一款在掩星探测模式下工作的高光谱成像光谱仪。该系统为共狭缝的双通道结构,紫外-可见光通道采用单凹面光栅结构、红外通道采用利特罗与浸没光栅结合结构,有效地减小了体积。利用软件对光学结构进行优化,优化结果表明:光谱仪在250~952 nm波段范围内工作,其中紫外-可见光通道工作波段为250~675 nm、光谱分辨率优于1 nm、MTF在奈奎斯特频率为20 lp/mm处均高于0.58、全视场各波长处RMS值均小于21 μm;红外通道工作波段为756~952 nm、光谱分辨率优于0.2 nm、MTF在奈奎斯特频率为20 lp/mm处均高于0.76、全视场各波长处RMS值均小于6 μm,均满足设计要求。结果表明该高光谱成像光谱仪系统可以实现对痕量气体的掩星探测。

     

  • 图 1  掩星探测原理图

    Figure 1.  Schematic diagram of occultation detection

    图 2  望远系统结构图。(a)二维图;(b)三维图

    Figure 2.  Structure diagram of the telescopic system. (a) two-dimensional view; (b) three-dimensional view

    图 3  望远系统MTF曲线图

    Figure 3.  MTF graph of the telescopic system

    图 4  望远系统点列图

    Figure 4.  Spot diagram of the telescopic system

    图 5  紫外-可见光分光系统结构图

    Figure 5.  Structural diagram of UV-Vis spectroscopic system

    图 6  不同波长下紫外-可见光通道MTF曲线图。(a)λ=675 nm;(b)λ=462.5 nm;(c)λ=250 nm

    Figure 6.  MTF graph of UV-vis channel at the wavelengthes of (a) λ=675 nm; (b) λ=462.5 nm; (c) λ=250 nm

    图 7  紫外-可见光通道点列图

    Figure 7.  Spot diagram of UV-vis channel

    图 8  红外通道结构图

    Figure 8.  Structural diagram of infrared channel

    图 9  红外通道不同波长下的MTF曲线图。(a)λ=952 nm;(b)λ=939 nm;(c)λ=926 nm;(d)λ=773 nm;(e)λ=764.5 nm;(f)λ=756 nm

    Figure 9.  MTF graph of infrared channel at the wavelengthes of (a) λ=952 nm; (b) λ=939 nm; (c) λ=926 nm; (d) λ=773 nm; (e) λ=764.5 nm; (f) λ=756 nm

    图 10  红外通道点列图

    Figure 10.  RMS image of infrared channel (λ=952、939、926、773、764.5、756 nm)

    图 11  光谱仪整体结构图

    Figure 11.  Overall structure diagram of the spectrometer

    图 12  光谱仪MTF曲线图

    Figure 12.  MTF graph of the spectrometer

    图 13  光谱仪点列图

    Figure 13.  Spot diagram of of the spectrometer

    图 14  光谱仪公差分析图

    Figure 14.  Tolerance analysis of the spectrometer (λ=939、764.5、462.5 nm)

    表  1  成像光谱仪的主要技术指标

    Table  1.   Main technical indicators of imaging spectrometer

    参数 指标
    系统波段/nm 250~952
    视场/(°) 0.48
    焦距/mm 950
    F数 8.26
    光谱分辨率/nm 0.2~1
    狭缝长度/mm 7.96
    MTF >0.58@20 lp/mm
    探测器像元数/pixel 1024×1024
    探测器像元尺寸/μm 13×13
    下载: 导出CSV
  • [1] YE X, YI X L, LIN CH, et al. Instrument development: Chinese radiometric benchmark of reflected solar band based on space cryogenic absolute radiometer[J]. Remote Sensing, 2020, 12(17): 2856. doi: 10.3390/rs12172856
    [2] 刘明言, 石秀顶, 李天国, 等. 电化学分析方法检测重金属离子研究进展[J]. 应用化学,2023,40(4):463-475.

    LIU M Y, SHI X D, LI T G, et al. Research progress in detection of heavy metal ions by electrochemical analysis[J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 463-475. (in Chinese).
    [3] THUILLIER G, ZHU P, SNOW M, et al. Characteristics of solar-irradiance spectra from measurements, modeling, and theoretical approach[J]. Light:Science & Applications, 2022, 11(1): 79.
    [4] 朱嘉诚, 陆伟奇, 赵知诚, 等. 静止轨道中波红外成像光谱仪分光成像系统[J]. 光学学报,2021,41(11):1122001. doi: 10.3788/AOS202141.1122001

    ZHU J CH, LU W Q, ZHAO Z CH, et al. Spectroscopic imaging system in mid-wave infrared imaging spectrometer on geostationary orbit[J]. Acta Optica Sinica, 2021, 41(11): 1122001. (in Chinese). doi: 10.3788/AOS202141.1122001
    [5] FENG A W, ZHAO SH J, HAN J ZH, et al. High spectral resolution compact Offner spectrometer based on the aberration-reduced convex holographic gratings recorded by spherical waves under Rowland circle mounting[J]. Applied Optics, 2022, 61(13): 3893-3900. doi: 10.1364/AO.458391
    [6] 谭奋利, 曾晨欣, 冯安伟, 等. 基于Dyson结构的新型快照式分光成像系统光学设计[J]. 光学学报,2022,42(4):0422002. doi: 10.3788/AOS202242.0422002

    TAN F L, ZENG CH X, FENG A W, et al. Optical design of novel snapshot spectral imaging system based on Dyson structure[J]. Acta Optica Sinica, 2022, 42(4): 0422002. (in Chinese). doi: 10.3788/AOS202242.0422002
    [7] DILS B, BUCHWITZ M, REUTER M, et al. The greenhouse gas climate change initiative (GHG-CCI): comparative validation of GHG-CCI SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT CO2 and CH4 retrieval algorithm products with measurements from the TCCON[J]. Atmospheric Measurement Techniques, 2014, 7(6): 1723-1744. doi: 10.5194/amt-7-1723-2014
    [8] REMUND Q P, NEWELL D, RODRIGUEZ J V, et al. The Ozone Mapping and Profiler Suite (OMPS): on-orbit calibration design[J]. Proceedings of SPIE, 2004, 5652: 165-173. doi: 10.1117/12.579016
    [9] SOUCY M A A, CHATEAUNEUF F, DEUTSCH C, et al. ACE-FTS instrument detailed design[J]. Proceedings of SPIE, 2002, 4814: 70-81. doi: 10.1117/12.451701
    [10] 钟美, 皮波, 佘勇, 等. FY-3B TOU与Aura OMI卫星臭氧总量产品的比对分析[J]. 气象研究与应用,2021,42(2):29-34.

    ZHONG M, PI B, SHE Y, et al. Comparative analysis of total ozone products between FY -3B TOU and Aura OMI satellite[J]. Journal of Meteorological Research and Application, 2021, 42(2): 29-34. (in Chinese).
    [11] 邵春沅, 顾明剑, 漆成莉, 等. 风云三号D星红外高光谱大气探测仪零光程差检测[J]. 光学 精密工程,2020,28(12):2573-2580. doi: 10.37188/OPE.20202812.2573

    SHAO CH Y, GU M J, QI CH L, et al. Detection of zero path difference position for FY-3D hyper-spectral in frared atmospheric sounder[J]. Optics and Precision Engineering, 2020, 28(12): 2573-2580. (in Chinese). doi: 10.37188/OPE.20202812.2573
    [12] 曹西凤, 李小英, 罗琪, 等. 星载红外高光谱传感器温度廓线反演综述[J]. 遥感学报,2021,25(2):577-598. doi: 10.11834/jrs.20210009

    CAO X F, LI X Y, LUO Q, et al. Review of temperature profile inversion of satellite-borne infrared hyperspectral sensors[J]. National Remote Sensing Bulletin, 2021, 25(2): 577-598. (in Chinese). doi: 10.11834/jrs.20210009
    [13] 张璐, 李博, 李寒霜, 等. 超光谱分辨率紫外双通道共光路成像光谱仪设计[J]. 中国光学(中英文),2022,15(5):1029-1037.

    ZHANG L, LI B, LI H SH, et al. Hyperspectral resolution ultraviolet dual channel common optical path imaging spectrometer[J]. Chinese Optics, 2022, 15(5): 1029-1037. (in Chinese).
    [14] 李寒霜, 李博, 李昊晨, 等. 基于一种透镜材料的宽谱段紫外成像仪光学设计[J]. 中国光学,2022,15(1):65-71.

    LI H SH, LI B, LI H CH, et al. Optical design of a wide-spectrum ultraviolet imager based on a single material[J]. Chinese Optics, 2022, 15(1): 65-71. (in Chinese).
    [15] SZUMSKI R, WALKER D D. The immersed echelle-I. Basic properties[J]. Monthly Notices of the Royal Astronomical Society, 1999, 302(1): 139-144. doi: 10.1046/j.1365-8711.1999.02107.x
    [16] CU-NGUYEN P H, GREWE A, FEßER P, et al. An imaging spectrometer employing tunable hyperchromatic microlenses[J]. Light:Science & Applications, 2016, 5(4): e16058.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  243
  • HTML全文浏览量:  180
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-30
  • 修回日期:  2023-09-22
  • 录用日期:  2023-10-31
  • 网络出版日期:  2023-11-08

目录

    /

    返回文章
    返回