Design of a fast multi-dimensional imaging guidance optical system based on array optics
-
摘要:
针对传统偏振光谱成像方法难以适用于弹载平台的难题,本文提出了一种基于阵列光学的快速多维度成像制导光学方案。构建了通道分辨率与望远放大倍率的关联模型,实现了微透镜阵列、光谱滤光阵列和微纳偏振阵列探测器参数的精准匹配和高效利用。基于常规导引头和工业偏振探测器,设计了包含球形整流罩的多维度成像制导光学系统。系统采用4×4光场分割布局,在可见光波段内形成16个光谱通道,光谱分辨率为16 nm,实现了单光路、单探测器条件下同时高效获取0°、45°、90°、135° 4个偏振方向偏振光谱图像数据。系统整体焦距为150 mm,筒长为145 mm。仿真结果表明,系统16个通道下全视场调制传递函数在奈奎斯特频率处均接近衍射极限,成像质量良好,满足弹载目标多维度探测与识别需求。
Abstract:To address the bottleneck that makes the conventional polarization spectral imaging method difficult to apply to the ballistic platform, a fast multi-dimensional imaging guidance optical system based on array optics is proposed. The correlation model between channel resolution and telescopic magnification is constructed. The precise matching and efficient utilization of the parameters of the microlens array, spectral filter array, and micro-nano-polarization array detector are realized. Based on the conventional guidance head and commercial polarization detector, a multi-dimensional imaging guidance optical system with spherical dome is designed. The system adopts a 4×4 optical field segmentation layout, forming 16 spectral channels through the visible light band with a spectral resolution of 16 nm. A polarization spectral data cube in four polarization directions, such as 0°, 45°, 90°, and 135° is acquired efficiently under the conditions of a single optical path and a single detector. The system has an effective focal length of 150 mm and a structure length of 145 mm. Simulation results show that the full-field modulation transfer function of the system is close to the diffraction limit at the Nyquist frequency for 16 channels. The imaging quality meets the requirements of bullet-loaded target multi-dimensional detection and identification.
-
表 1 光学系统技术指标
Table 1. Technical index of the optical system
参数 数值 有效焦距/mm 150 入瞳孔径/mm 17.25 空间分辨率/m 0.25@10 km 视场/mrad 5.34×5.34 工作波长/nm 450~706 光谱分辨率/nm 16 探测器靶面 4096 ×3000 像元尺寸/μm 3.45 表 2 光学系统公差设置
Table 2. Optical system tolerance settings
对象 公差类型 数值 望远单元 主镜 次镜 X、Y方向偏心/mm ±0.08 ±0.08 Z方向厚度/mm ±0.025 ±0.025 X、Y方向倾斜/(°) ±0.1 ±0.1 二次曲率系数 ±0.001 ±0.001 曲率半径/mm ±0.001 ±0.001 微透镜阵列 位置精度偏心/mm ±0.005 厚度/mm ±0.025 单元透镜倾斜/(′) ±0.3 不规则度 ±0.2 曲率半径/mm ±0.01 光谱滤光阵列 位置精度偏心/mm ±0.005 光谱通道倾斜/(′) ±0.3 不规则度 ±0.2 厚度/mm ±0.01 常规透镜 折射率 ± 0.0008 光圈数 ±2 厚度/mm ±0.025 不规则度 ±0.25 阿贝数/% 0.08 元件倾斜/(′) ±0.8 表面倾斜/(′) ±0.8 元件偏心/mm ±0.008 表面偏心/mm ±0.008 表 3 蒙特卡罗公差分析结果
Table 3. Monte Carlo tolerance analysis results
通道 RMS光斑半径/μm 通道 RMS光斑半径/μm 90% 90% 通道1 5.936 通道9 4.737 通道2 4.927 通道10 2.899 通道3 4.786 通道11 2.994 通道4 5.723 通道12 4.938 通道5 4.880 通道13 5.885 通道6 3.087 通道 14 5.047 通道7 3.007 通道15 5.296 通道8 4.895 通道16 5.821 -
[1] 谢亚峰, 朴明旭, 唐金力, 等. 激光/红外双模环形孔径导引头光学系统设计[J]. 红外与激光工程,2023,52(2):20220442. doi: 10.3788/IRLA20220442XIE Y F, PIAO M X, TANG J L, et al. Optical system design of laser/infrared dual-mode annular aperture seeker[J]. Infrared and Laser Engineering, 2023, 52(2): 20220442. (in Chinese). doi: 10.3788/IRLA20220442 [2] 于俊庭, 李少毅, 张平, 等. 光电成像末制导智能化技术研究与展望[J]. 红外与激光工程,2023,52(5):20220725. doi: 10.3788/IRLA20220725YU J T, LI SH Y, ZHANG P, et al. Research and prospect of intelligent technology of optoelectronic imaging terminal guidance[J]. Infrared and Laser Engineering, 2023, 52(5): 20220725. (in Chinese). doi: 10.3788/IRLA20220725 [3] 刘箴, 张宁, 吴馨远. 多模复合导引头发展现状及趋势[J]. 飞航导弹, 2019, (10): 90-96.LIU ZH, ZHANG N, WU X Y. Multimode composite guide head development status and trends[J]. Aerodynamic Missile Journal, 2019, (10): 90-96. (in Chinese). [4] 史浩东, 王稼禹, 李英超, 等. 复杂海况下海洋生态环境多维度光学监测方法[J]. 光学学报,2022,42(6):0600004. doi: 10.3788/AOS202242.0600004SHI H D, WANG J Y, LI Y CH, et al. Multi-dimensional optical monitoring method of marine ecological environment under complex sea conditions[J]. Acta Optica Sinica, 2022, 42(6): 0600004. (in Chinese). doi: 10.3788/AOS202242.0600004 [5] 胡福东. 地面复杂背景下隐身目标多波段偏振检测及对制导律的影响特性分析[D]. 南京: 南京理工大学, 2017.HU F D. Multi-spectral polarization detection of stealth targets under complex ground background with analysis of influence to guidance law[D]. Nanjing: Nanjing University of Science & Technology, 2017. (in Chinese). [6] FOUGNIE B, MARBACH T, LACAN A, et al. The multi-viewing multi-channel multi-polarisation imager–Overview of the 3MI polarimetric mission for aerosol and cloud characterization[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 219: 23-32. doi: 10.1016/j.jqsrt.2018.07.008 [7] 李辉, 薛庆生, 白皓轩, 等. 基于强度调制的偏振光谱测量技术[J]. 光子学报,2023,52(4):0430001. doi: 10.3788/gzxb20235204.0430001LI H, XUE Q SH, BAI H X, et al. Polarization spectrum measurement technology based on intensity modulation[J]. Acta Photonica Sinica, 2023, 52(4): 0430001. (in Chinese). doi: 10.3788/gzxb20235204.0430001 [8] GU N T, YAO B X, HUANG L H, et al. Design and analysis of a novel compact and simultaneous polarimeter for complete stokes polarization imaging with a piece of encoded birefringent crystal and a micropolarizer array[J]. IEEE Photonics Journal, 2018, 10(2): 6801312. [9] 石晶晶, 李孟凡, 胡亚东, 等. 紫外可见偏振成像光谱仪的光谱定标与匹配方法[J]. 光学学报,2022,42(9):0930002. doi: 10.3788/AOS202242.0930002SHI J J, LI M F, HU Y D, et al. Spectral calibration and matching method for ultraviolet-visible polarization imaging spectrometer[J]. Acta Optica Sinica, 2022, 42(9): 0930002. (in Chinese). doi: 10.3788/AOS202242.0930002 [10] 赵义武, 段云, 李英超, 等. 基于双Wollaston棱镜的静态光谱偏振成像系统设计[J]. 兵工学报,2019,40(8):1658-1664. doi: 10.3969/j.issn.1000-1093.2019.08.014ZHAO Y W, DUAN Y, LI Y CH, et al. Design of static spectral polarization imaging system with double wollaston prism[J]. Acta Armamentarii, 2019, 40(8): 1658-1664. (in Chinese). doi: 10.3969/j.issn.1000-1093.2019.08.014 [11] SATTAR S, LAPRAY P J, AKSAS L, et al. Snapshot spectropolarimetric imaging using a pair of filter array cameras[J]. Optical Engineering, 2022, 61(4): 043104. [12] EL-HABASHI A, BOWLES J, FOSTER R, et al. Polarized observations for advanced atmosphere-ocean algorithms using airborne multi-spectral hyper-angular polarimetric imager[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 262: 107515. doi: 10.1016/j.jqsrt.2021.107515 [13] LV X B, YANG ZH H, LI Y W, et al. Lenslet-based snapshot full-Stokes imaging spectropolarimeter[J]. Optics & Laser Technology, 2022, 148: 107758. [14] CHEN Z Y, ZHANG CH M, MU T K, et al. Coded aperture full-stokes imaging spectropolarimeter[J]. Optics & Laser Technology, 2022, 150: 107946. [15] WANG J Y, SHI H D, LIU J N, et al. Compressive space-dimensional dual-coded hyperspectral polarimeter (CSDHP) and interactive design method[J]. Optics Express, 2023, 31(6): 9886-9903. doi: 10.1364/OE.484233 [16] 王丹艺, 薛常喜, 李闯, 等. 基于微透镜阵列的电子内窥镜光学系统设计[J]. 光学学报,2018,38(2):0222003. doi: 10.3788/AOS201838.0222003WANG D Y, XUE CH X, LI CH, et al. Design of electronic endoscope optical system based on microlens array[J]. Acta Optica Sinica, 2018, 38(2): 0222003. (in Chinese). doi: 10.3788/AOS201838.0222003 [17] 刘德森. 微小光学与微透镜阵列[M]. 北京: 科学出版社, 2013: 319-322.LIU D S. Micro Optics and Microlens Arrays[M]. Beijing: Science Press, 2013: 319-322. (in Chinese). [18] 段营部. 多通道窄带滤光片的设计与制备技术研究[D]. 西安: 西安工业大学, 2020.DUAN Y B. Design and preparation technology of multi-channel narrow band filter[D]. Xi'an: Xi'an Technological University, 2020. (in Chinese). [19] CHU J K, WANG ZH W, GUAN L, et al. Integrated polarization dependent photodetector and its application for polarization navigation[J]. IEEE Photonics Technology Letters, 2014, 26(5): 469-472. doi: 10.1109/LPT.2013.2296945 [20] 梁宛玉, 许洁, 戴放, 等. 固态微光实时偏振成像集成技术[J]. 中国光学,2021,14(3):578-586. doi: 10.37188/CO.2020-0086LIANG W Y, XU J, DAI F, et al. Real-time polarization imaging integrated technology for solid-state low-light imaging[J]. Chinese Optics, 2021, 14(3): 578-586. (in Chinese). doi: 10.37188/CO.2020-0086 [21] 赵洪卫, 侯天晋, 朱斌. 军用光学整流罩技术研究的进展[J]. 激光与红外,2010,40(9):926-931. doi: 10.3969/j.issn.1001-5078.2010.09.002ZHAO H W, HOU T J, ZHU B. Military optical domes techniques researchful developments[J]. Laser & Infrared, 2010, 40(9): 926-931. (in Chinese). doi: 10.3969/j.issn.1001-5078.2010.09.002 [22] 张元涛, 孙德新, 刘银年. 基于CMOS图像传感器的微光成像系统信噪比研究[J]. 红外,2018,39(7):1-7. doi: 10.3969/j.issn.1672-8785.2018.07.001ZHANG Y T, SUN D X, LIU Y N. Study of SNR of low light level imaging system based on CMOS image sensor[J]. Infrared, 2018, 39(7): 1-7. (in Chinese). doi: 10.3969/j.issn.1672-8785.2018.07.001 [23] 李静, 宋广, 董珊, 等. 非制冷红外焦平面探测器研究进展与趋势[J]. 红外,2020,41(10):1-14,24. doi: 10.3969/j.issn.1672-8785.2020.10.001LI J, SONG G, DONG SH, et al. Research progress and trend of uncooled infrared focal plane detectors[J]. Infrared, 2020, 41(10): 1-14,24. (in Chinese). doi: 10.3969/j.issn.1672-8785.2020.10.001 [24] 王琪, 梁静秋, 梁中翥, 等. 分孔径红外偏振成像仪光学系统设计[J]. 中国光学,2018,11(1):92-99. doi: 10.3788/co.20181101.0092WANG Q, LIANG J Q, LIANG ZH ZH, et al. Design of decentered aperture-divided optical system of infrared polarization imager[J]. Chinese Optics, 2018, 11(1): 92-99. (in Chinese). doi: 10.3788/co.20181101.0092 [25] 李美萱, 王美娇, 王丽, 等. 光刻照明系统中复眼透镜的设计及公差分析[J]. 激光与红外,2017,47(7):842-847. doi: 10.3969/j.issn.1001-5078.2017.07.011LI M X, WANG M J, WANG L, et al. Design and tolerance analysis of compound eye lens in lithography lighting system[J]. Laser & Infrared, 2017, 47(7): 842-847. (in Chinese). doi: 10.3969/j.issn.1001-5078.2017.07.011 [26] 孙昇, 王超, 史浩东, 等. 分孔径离轴同时偏振超分辨率成像光学系统像差校正[J]. 物理学报,2022,71(21):214201. doi: 10.7498/aps.71.20220946SUN SH, WANG CH, SHI H D, et al. Aberration correction of aperture-divided off-axis simultaneous polarization super-resolution imaging optical system[J]. Acta Physica Sinica, 2022, 71(21): 214201. (in Chinese). doi: 10.7498/aps.71.20220946