留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于阵列光学的快速多维度成像制导光学系统设计

史浩东 卢琦 赵义武 王稼禹 赵晓 李英超 付强

史浩东, 卢琦, 赵义武, 王稼禹, 赵晓, 李英超, 付强. 基于阵列光学的快速多维度成像制导光学系统设计[J]. 中国光学(中英文), 2024, 17(6): 1418-1430. doi: 10.37188/CO.2023-0206
引用本文: 史浩东, 卢琦, 赵义武, 王稼禹, 赵晓, 李英超, 付强. 基于阵列光学的快速多维度成像制导光学系统设计[J]. 中国光学(中英文), 2024, 17(6): 1418-1430. doi: 10.37188/CO.2023-0206
SHI Hao-dong, LU Qi, ZHAO Yi-wu, WANG Jia-yu, ZHAO Xiao, LI Ying-chao, FU Qiang. Design of a fast multi-dimensional imaging guidance optical system based on array optics[J]. Chinese Optics, 2024, 17(6): 1418-1430. doi: 10.37188/CO.2023-0206
Citation: SHI Hao-dong, LU Qi, ZHAO Yi-wu, WANG Jia-yu, ZHAO Xiao, LI Ying-chao, FU Qiang. Design of a fast multi-dimensional imaging guidance optical system based on array optics[J]. Chinese Optics, 2024, 17(6): 1418-1430. doi: 10.37188/CO.2023-0206

基于阵列光学的快速多维度成像制导光学系统设计

cstr: 32171.14.CO.2023-0206
基金项目: 吉林省教育厅科学技术研究项目(No. JJKH20230813KJ)
详细信息
    作者简介:

    史浩东(1989—),男,吉林长春人,博士,副研究员,博士生导师,主要从事先进光学系统设计及多维度探测方面的研究。E-mail:shihaodong08@163.com

  • 中图分类号: O435.1;O435.2;O436.3

Design of a fast multi-dimensional imaging guidance optical system based on array optics

Funds: Supported by Jilin Provincial Department of Education Science and Technology Research Project (No. JJKH20230813KJ)
More Information
  • 摘要:

    针对传统偏振光谱成像方法难以适用于弹载平台的难题,本文提出了一种基于阵列光学的快速多维度成像制导光学方案。构建了通道分辨率与望远放大倍率的关联模型,实现了微透镜阵列、光谱滤光阵列和微纳偏振阵列探测器参数的精准匹配和高效利用。基于常规导引头和工业偏振探测器,设计了包含球形整流罩的多维度成像制导光学系统。系统采用4×4光场分割布局,在可见光波段内形成16个光谱通道,光谱分辨率为16 nm,实现了单光路、单探测器条件下同时高效获取0°、45°、90°、135° 4个偏振方向偏振光谱图像数据。系统整体焦距为150 mm,筒长为145 mm。仿真结果表明,系统16个通道下全视场调制传递函数在奈奎斯特频率处均接近衍射极限,成像质量良好,满足弹载目标多维度探测与识别需求。

     

  • 图 1  本文所提多维度快速成像制导光学系统组成示意图

    Figure 1.  Schematic diagram of the proposed fast multi-dimensional imaging guidance optical system

    图 2  光学系统符号示意图

    Figure 2.  Symbolic diagram of the optical system

    图 3  不同空间分辨率下微透镜阵列子单元通光孔径与望远单元放大倍率关系曲线

    Figure 3.  The relationship between the aperture of the sub-unit of the microlens array and the telescope unit magnification at different spatial resolutions

    图 4  光谱滤光阵列透过率曲线

    Figure 4.  Transmittance curves of spectral filter array channel

    图 5  探测器区域划分示意图

    Figure 5.  Schematic diagram of detector’s area division

    图 6  微透镜阵列像方远心光路示意图

    Figure 6.  Schematic diagram of telecentric imaging optical path of microlens array

    图 7  光学系统设计三维图

    Figure 7.  Three-dimensional diagram of the designed optical system

    图 8  光学系统16个光谱通道的MTF

    Figure 8.  MTF of 16 spectral channels of the optical system

    图 9  光学系统16个光谱通道归一化视场下的畸变图

    Figure 9.  Distortion map of 16 spectral channels in the normalized field of view of the optical system

    图 10  光学系统16个光谱通道能量集中度曲线

    Figure 10.  The energy concentration curves of 16 spectral channels of the optical system

    表  1  光学系统技术指标

    Table  1.   Technical index of the optical system

    参数 数值
    有效焦距/mm 150
    入瞳孔径/mm 17.25
    空间分辨率/m 0.25@10 km
    视场/mrad 5.34×5.34
    工作波长/nm 450~706
    光谱分辨率/nm 16
    探测器靶面 4096×3000
    像元尺寸/μm 3.45
    下载: 导出CSV

    表  2  光学系统公差设置

    Table  2.   Optical system tolerance settings

    对象 公差类型 数值
    望远单元 主镜 次镜
    XY方向偏心/mm ±0.08 ±0.08
    Z方向厚度/mm ±0.025 ±0.025
    XY方向倾斜/(°) ±0.1 ±0.1
    二次曲率系数 ±0.001 ±0.001
    曲率半径/mm ±0.001 ±0.001
    微透镜阵列 位置精度偏心/mm ±0.005
    厚度/mm ±0.025
    单元透镜倾斜/(′) ±0.3
    不规则度 ±0.2
    曲率半径/mm ±0.01
    光谱滤光阵列 位置精度偏心/mm ±0.005
    光谱通道倾斜/(′) ±0.3
    不规则度 ±0.2
    厚度/mm ±0.01
    常规透镜 折射率 ±0.0008
    光圈数 ±2
    厚度/mm ±0.025
    不规则度 ±0.25
    阿贝数/% 0.08
    元件倾斜/(′) ±0.8
    表面倾斜/(′) ±0.8
    元件偏心/mm ±0.008
    表面偏心/mm ±0.008
    下载: 导出CSV

    表  3  蒙特卡罗公差分析结果

    Table  3.   Monte Carlo tolerance analysis results

    通道 RMS光斑半径/μm 通道 RMS光斑半径/μm
    90% 90%
    通道1 5.936 通道9 4.737
    通道2 4.927 通道10 2.899
    通道3 4.786 通道11 2.994
    通道4 5.723 通道12 4.938
    通道5 4.880 通道13 5.885
    通道6 3.087 通道 14 5.047
    通道7 3.007 通道15 5.296
    通道8 4.895 通道16 5.821
    下载: 导出CSV
  • [1] 谢亚峰, 朴明旭, 唐金力, 等. 激光/红外双模环形孔径导引头光学系统设计[J]. 红外与激光工程,2023,52(2):20220442. doi: 10.3788/IRLA20220442

    XIE Y F, PIAO M X, TANG J L, et al. Optical system design of laser/infrared dual-mode annular aperture seeker[J]. Infrared and Laser Engineering, 2023, 52(2): 20220442. (in Chinese). doi: 10.3788/IRLA20220442
    [2] 于俊庭, 李少毅, 张平, 等. 光电成像末制导智能化技术研究与展望[J]. 红外与激光工程,2023,52(5):20220725. doi: 10.3788/IRLA20220725

    YU J T, LI SH Y, ZHANG P, et al. Research and prospect of intelligent technology of optoelectronic imaging terminal guidance[J]. Infrared and Laser Engineering, 2023, 52(5): 20220725. (in Chinese). doi: 10.3788/IRLA20220725
    [3] 刘箴, 张宁, 吴馨远. 多模复合导引头发展现状及趋势[J]. 飞航导弹, 2019, (10): 90-96.

    LIU ZH, ZHANG N, WU X Y. Multimode composite guide head development status and trends[J]. Aerodynamic Missile Journal, 2019, (10): 90-96. (in Chinese).
    [4] 史浩东, 王稼禹, 李英超, 等. 复杂海况下海洋生态环境多维度光学监测方法[J]. 光学学报,2022,42(6):0600004. doi: 10.3788/AOS202242.0600004

    SHI H D, WANG J Y, LI Y CH, et al. Multi-dimensional optical monitoring method of marine ecological environment under complex sea conditions[J]. Acta Optica Sinica, 2022, 42(6): 0600004. (in Chinese). doi: 10.3788/AOS202242.0600004
    [5] 胡福东. 地面复杂背景下隐身目标多波段偏振检测及对制导律的影响特性分析[D]. 南京: 南京理工大学, 2017.

    HU F D. Multi-spectral polarization detection of stealth targets under complex ground background with analysis of influence to guidance law[D]. Nanjing: Nanjing University of Science & Technology, 2017. (in Chinese).
    [6] FOUGNIE B, MARBACH T, LACAN A, et al. The multi-viewing multi-channel multi-polarisation imager–Overview of the 3MI polarimetric mission for aerosol and cloud characterization[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 219: 23-32. doi: 10.1016/j.jqsrt.2018.07.008
    [7] 李辉, 薛庆生, 白皓轩, 等. 基于强度调制的偏振光谱测量技术[J]. 光子学报,2023,52(4):0430001. doi: 10.3788/gzxb20235204.0430001

    LI H, XUE Q SH, BAI H X, et al. Polarization spectrum measurement technology based on intensity modulation[J]. Acta Photonica Sinica, 2023, 52(4): 0430001. (in Chinese). doi: 10.3788/gzxb20235204.0430001
    [8] GU N T, YAO B X, HUANG L H, et al. Design and analysis of a novel compact and simultaneous polarimeter for complete stokes polarization imaging with a piece of encoded birefringent crystal and a micropolarizer array[J]. IEEE Photonics Journal, 2018, 10(2): 6801312.
    [9] 石晶晶, 李孟凡, 胡亚东, 等. 紫外可见偏振成像光谱仪的光谱定标与匹配方法[J]. 光学学报,2022,42(9):0930002. doi: 10.3788/AOS202242.0930002

    SHI J J, LI M F, HU Y D, et al. Spectral calibration and matching method for ultraviolet-visible polarization imaging spectrometer[J]. Acta Optica Sinica, 2022, 42(9): 0930002. (in Chinese). doi: 10.3788/AOS202242.0930002
    [10] 赵义武, 段云, 李英超, 等. 基于双Wollaston棱镜的静态光谱偏振成像系统设计[J]. 兵工学报,2019,40(8):1658-1664. doi: 10.3969/j.issn.1000-1093.2019.08.014

    ZHAO Y W, DUAN Y, LI Y CH, et al. Design of static spectral polarization imaging system with double wollaston prism[J]. Acta Armamentarii, 2019, 40(8): 1658-1664. (in Chinese). doi: 10.3969/j.issn.1000-1093.2019.08.014
    [11] SATTAR S, LAPRAY P J, AKSAS L, et al. Snapshot spectropolarimetric imaging using a pair of filter array cameras[J]. Optical Engineering, 2022, 61(4): 043104.
    [12] EL-HABASHI A, BOWLES J, FOSTER R, et al. Polarized observations for advanced atmosphere-ocean algorithms using airborne multi-spectral hyper-angular polarimetric imager[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 262: 107515. doi: 10.1016/j.jqsrt.2021.107515
    [13] LV X B, YANG ZH H, LI Y W, et al. Lenslet-based snapshot full-Stokes imaging spectropolarimeter[J]. Optics & Laser Technology, 2022, 148: 107758.
    [14] CHEN Z Y, ZHANG CH M, MU T K, et al. Coded aperture full-stokes imaging spectropolarimeter[J]. Optics & Laser Technology, 2022, 150: 107946.
    [15] WANG J Y, SHI H D, LIU J N, et al. Compressive space-dimensional dual-coded hyperspectral polarimeter (CSDHP) and interactive design method[J]. Optics Express, 2023, 31(6): 9886-9903. doi: 10.1364/OE.484233
    [16] 王丹艺, 薛常喜, 李闯, 等. 基于微透镜阵列的电子内窥镜光学系统设计[J]. 光学学报,2018,38(2):0222003. doi: 10.3788/AOS201838.0222003

    WANG D Y, XUE CH X, LI CH, et al. Design of electronic endoscope optical system based on microlens array[J]. Acta Optica Sinica, 2018, 38(2): 0222003. (in Chinese). doi: 10.3788/AOS201838.0222003
    [17] 刘德森. 微小光学与微透镜阵列[M]. 北京: 科学出版社, 2013: 319-322.

    LIU D S. Micro Optics and Microlens Arrays[M]. Beijing: Science Press, 2013: 319-322. (in Chinese).
    [18] 段营部. 多通道窄带滤光片的设计与制备技术研究[D]. 西安: 西安工业大学, 2020.

    DUAN Y B. Design and preparation technology of multi-channel narrow band filter[D]. Xi'an: Xi'an Technological University, 2020. (in Chinese).
    [19] CHU J K, WANG ZH W, GUAN L, et al. Integrated polarization dependent photodetector and its application for polarization navigation[J]. IEEE Photonics Technology Letters, 2014, 26(5): 469-472. doi: 10.1109/LPT.2013.2296945
    [20] 梁宛玉, 许洁, 戴放, 等. 固态微光实时偏振成像集成技术[J]. 中国光学,2021,14(3):578-586. doi: 10.37188/CO.2020-0086

    LIANG W Y, XU J, DAI F, et al. Real-time polarization imaging integrated technology for solid-state low-light imaging[J]. Chinese Optics, 2021, 14(3): 578-586. (in Chinese). doi: 10.37188/CO.2020-0086
    [21] 赵洪卫, 侯天晋, 朱斌. 军用光学整流罩技术研究的进展[J]. 激光与红外,2010,40(9):926-931. doi: 10.3969/j.issn.1001-5078.2010.09.002

    ZHAO H W, HOU T J, ZHU B. Military optical domes techniques researchful developments[J]. Laser & Infrared, 2010, 40(9): 926-931. (in Chinese). doi: 10.3969/j.issn.1001-5078.2010.09.002
    [22] 张元涛, 孙德新, 刘银年. 基于CMOS图像传感器的微光成像系统信噪比研究[J]. 红外,2018,39(7):1-7. doi: 10.3969/j.issn.1672-8785.2018.07.001

    ZHANG Y T, SUN D X, LIU Y N. Study of SNR of low light level imaging system based on CMOS image sensor[J]. Infrared, 2018, 39(7): 1-7. (in Chinese). doi: 10.3969/j.issn.1672-8785.2018.07.001
    [23] 李静, 宋广, 董珊, 等. 非制冷红外焦平面探测器研究进展与趋势[J]. 红外,2020,41(10):1-14,24. doi: 10.3969/j.issn.1672-8785.2020.10.001

    LI J, SONG G, DONG SH, et al. Research progress and trend of uncooled infrared focal plane detectors[J]. Infrared, 2020, 41(10): 1-14,24. (in Chinese). doi: 10.3969/j.issn.1672-8785.2020.10.001
    [24] 王琪, 梁静秋, 梁中翥, 等. 分孔径红外偏振成像仪光学系统设计[J]. 中国光学,2018,11(1):92-99. doi: 10.3788/co.20181101.0092

    WANG Q, LIANG J Q, LIANG ZH ZH, et al. Design of decentered aperture-divided optical system of infrared polarization imager[J]. Chinese Optics, 2018, 11(1): 92-99. (in Chinese). doi: 10.3788/co.20181101.0092
    [25] 李美萱, 王美娇, 王丽, 等. 光刻照明系统中复眼透镜的设计及公差分析[J]. 激光与红外,2017,47(7):842-847. doi: 10.3969/j.issn.1001-5078.2017.07.011

    LI M X, WANG M J, WANG L, et al. Design and tolerance analysis of compound eye lens in lithography lighting system[J]. Laser & Infrared, 2017, 47(7): 842-847. (in Chinese). doi: 10.3969/j.issn.1001-5078.2017.07.011
    [26] 孙昇, 王超, 史浩东, 等. 分孔径离轴同时偏振超分辨率成像光学系统像差校正[J]. 物理学报,2022,71(21):214201. doi: 10.7498/aps.71.20220946

    SUN SH, WANG CH, SHI H D, et al. Aberration correction of aperture-divided off-axis simultaneous polarization super-resolution imaging optical system[J]. Acta Physica Sinica, 2022, 71(21): 214201. (in Chinese). doi: 10.7498/aps.71.20220946
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  114
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-14
  • 修回日期:  2023-12-11
  • 网络出版日期:  2024-04-30

目录

    /

    返回文章
    返回