留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Opto-mechanical-thermal integration analysis of Doppler asymmetric spatial heterodyne interferometer

WANG Jin-jiang JIANG Lun TONG Shou-feng PEI Hui-yi CUI Yong GUO Ming-hang

王锦疆, 江伦, 佟首峰, 裴惠熠, 崔勇, 郭名航. 多普勒外差干涉仪的光机热集成分析[J]. 中国光学(中英文), 2024, 17(6): 1489-1511. doi: 10.37188/CO.2023-0234
引用本文: 王锦疆, 江伦, 佟首峰, 裴惠熠, 崔勇, 郭名航. 多普勒外差干涉仪的光机热集成分析[J]. 中国光学(中英文), 2024, 17(6): 1489-1511. doi: 10.37188/CO.2023-0234
WANG Jin-jiang, JIANG Lun, TONG Shou-feng, PEI Hui-yi, CUI Yong, GUO Ming-hang. Opto-mechanical-thermal integration analysis of Doppler asymmetric spatial heterodyne interferometer[J]. Chinese Optics, 2024, 17(6): 1489-1511. doi: 10.37188/CO.2023-0234
Citation: WANG Jin-jiang, JIANG Lun, TONG Shou-feng, PEI Hui-yi, CUI Yong, GUO Ming-hang. Opto-mechanical-thermal integration analysis of Doppler asymmetric spatial heterodyne interferometer[J]. Chinese Optics, 2024, 17(6): 1489-1511. doi: 10.37188/CO.2023-0234

多普勒外差干涉仪的光机热集成分析

详细信息
  • 中图分类号: TH.744

Opto-mechanical-thermal integration analysis of Doppler asymmetric spatial heterodyne interferometer

doi: 10.37188/CO.2023-0234
Funds: Supported by National Key Research and Development Program of China (No. 2022YFB3902500); Key Research and Development Program of Jilin Province (No. 20230201006GX)
More Information
    Author Bio:

    Wang Jin-jiang (1998—), male, born in Hanzhong, Shaanxi Province, master candidate, He received his bachelor's degree from Changchun University of Science and Technology in 2021,mainly engaged in space optical technology and other aspects of research. E-mail: 13843075373@163.com

    TONG Shou-feng (1972—), male, born in Changchun, Jilin Province. Ph.D., Professor and Doctoral Supervisor. He received his Ph.D. from Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences in 2000. He is mainly engaged in space remote sensing and laser communication research. E-mail: tsf1998@sina.com

    Corresponding author: tsf1998@sina.com
  • 摘要:

    为提高地基多普勒非对称空间外差(DASH)干涉仪在恶劣温度下的探测精度,对系统进行了光机热集成分析。首先,依据干涉仪的工作原理和相位算法建立了相位与温度的关联依据。接着,设计了光机热分析模型和热变形数据获取模型,采用温度负载仿真分析给出了干涉模块和成像光学系统在不同温度下的变形数据,拟合得到热变形所导致的相位误差。最后,基于各部件热变形造成的风速误差,给出合理的温控方案。结果表明,干涉模块占据主因,必须确保温度控制在(20±0.05) °C内,并针对温度敏感部件进行温度控制,此时,该部件造成的风速误差为3.8 m/s。成像光学系统放大倍数的热漂移、成像光学系统和探测器相对位置的热漂移占据次因,应将其控制在(20±2) °C以内,此时该部件造成的风速误差为3.05 m/s。通过以上措施可以将干涉模块、成像光学系统、成像光学系统与探测器的相对位置三者共同造成的风速测量误差控制在6.85 m/s内。本文的分析方案和温控措施可以为DASH干涉仪工程应用提供理论依据。

     

  • Figure 1.  Schematic diagram of DASH interferometer

    Figure 2.  Flowchart of opto-mechanical-thermal integration analysis

    Figure 3.  Main view of the interferometer

    Figure 4.  (a) Interference fringe and (b) fringe number before fine tuning

    Figure 5.  (a) Interference fringe and (b) fringe number after fine funning

    Figure 6.  Physical picture of DASH interferometer

    Figure 7.  Schematic diagram of interference module. γ: wedge angle of the spacer, α: vertex angle of the field-widening prism, η: wedge angle of the grating spacer

    Figure 8.  Structural diagram of interference module. (a) Optical model; (b) interference module physical diagram

    Figure 9.  (a) Optical-mechanical model; (b) interference module optical-mechanical structure

    Figure 10.  Optical-mechanical finite element model of interference module

    Figure 11.  Reference points location

    Figure 12.  Local coordinate system of reference points

    Figure 13.  (a) Optical model and (b) opto-mechanical model of imaging optical system

    Figure 14.  Optical-mechanical physical picture of imaging optical system

    Figure 15.  Imaging optical system and detector relative position monitoring model

    Figure 16.  Thermal analysis cloud map of the interference module

    Figure 17.  Thermal deformation cloud map of the interference module

    Figure 18.  Relationship between Littrow angle and temperature for (a) G1 arm; (b) G2 arm

    Figure 19.  Relationship between Littrow wavenumber and temperature for (a) G1 arm; (b) G2 arm

    Figure 20.  The variance of interference phase error caused by the drift of the G1 arm and G2 arm at different temperatures

    Figure 21.  Relationship between the thermal drift value of the optical path difference and temperature

    Figure 22.  Relationship between phase thermal drift caused by optical path difference and temperature thermal drift

    Figure 23.  Relationship between wind speed error caused by G1 and G2 thermal drift and temperature

    Figure 24.  Relationship between wind speed error caused by optical path difference and temperature

    Figure 25.  Thermal analysis cloud map of imaging optical system

    Figure 26.  Thermal deformation cloud map of imaging optical system

    Figure 27.  Magnification of imaging optical system at different temperatures

    Figure 28.  Magnification error of the imaging optical system at different temperatures

    Figure 29.  Relationship between phase error caused by thermal drift of magnification and temperature

    Figure 30.  Thermal analysis cloud map of relative positions of the imaging optical system and the detector

    Figure 31.  Variation of the changes of relative position between the imaging optical system and the detector with temperature

    Figure 32.  Variation of phase thermal drift caused by the changes of relative position between the imaging optical system and the detector with temperature

    Figure 33.  Wind speed error caused by thermal drift of magnification at different temperatures

    Figure 34.  Wind speed error caused by the changes of relative position between the imaging optical system and the detector at different temperatures

    Table  1.   Index parameters of DASH interferometer

    Attribute Parameter
    Fore-optical system
    Field of view 5.314°×4°
    Clear aperture diameter 35 mm
    Interferometer module
    Littrow wavelength/nm 557.137
    Target line wavelength/nm 557.7
    Groove spacing/(gr·mm−1) 600
    Littrow angle/(°) 9.6216
    Interferometer offset/cm 1.75
    Imaging-optical system
    F/# 7.35
    Total length 223.5 mm
    Magnification 0.5899
    Transmissivity 0.93
    Detector
    CCD pixel size/μm 13
    CCD pixel number 1024
    下载: 导出CSV

    Table  2.   Material characteristics of interferometer

    Elements Materials Young’s modulus (MPa) Poisson’s ratio Thermal conductivity
    ($ \mathrm{W}\cdot {\mathrm{m}\mathrm{m}}^{-1}\cdot {\mathrm{K}}^{-1} $)
    CET
    ($ {10}^{-7}\cdot {\mathrm{K}}^{-1} $)
    Beam splitting(BS) H-K9LAGT 81450 0.209 0.00075 72
    Field-widening Prism(F1,F2) H-LaK2A 94150 0.295 0.00075 80
    Gratings(G1,G2) Fused-Silica 74000 0.17 0.00138 5.1
    Spacer(W1) H-FK6 70070 0.3 0.00075 131
    Spacer(W2) Fused-Silica 740000 0.17 0.00138 5.1
    Parallel bias(P1) H-K9LAGT 81450 0.209 0.00075 72
    Mechanical shell,Work platform Al alloy2A12 72000 0.3 0.203 230
    下载: 导出CSV
  • [1] YE S, FANG Y H, HONG J, et al. Development and application of spatial heterodyne spectroscopy[J]. Chinese Journal of Scientific Instrument, 2006, 27(6 Suppl 1): 983-985. (in Chinese).
    [2] SHEN J, WANG G J. Doppler asymmetric spatial external aberration spectroscopy for wind field detection[J]. Electronic Technology & Software Engineering, 2020(11): 95-97. (in Chinese).
    [3] BABCOCK D D. Development of a space flight prototype Doppler Asymmetric Spatial Heterodyne (DASH) spectrometer for the measurement of upper atmospheric winds[R]. ELLICOTT: ARTEP INC, 2011.
    [4] SOLHEIM B, BROWN S, SIORIS C, et al. SWIFT-DASH: spatial heterodyne spectroscopy approach to stratospheric wind and ozone measurement[J]. Atmosphere-Ocean, 2015, 53(1): 50-57. doi: 10.1080/07055900.2013.855160
    [5] ENGLERT C R, HARLANDER J M, MARR K D, et al. Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI) on-orbit wind observations: data analysis and instrument performance[J]. Space Science Reviews, 2023, 219(3): 27. doi: 10.1007/s11214-023-00971-1
    [6] 张亚飞. 星载热层风场探测多普勒差分干涉仪反演技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2023.

    ZHANG Y F. Research on wind field retrieval technology of spaceborne Doppler asymmetric spatical heterodyne interferometer[D]. Xi’an: Xi’an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2023. (in Chinese).
    [7] ENGLERT C R, HARLANDER J M, EMMERT J T, et al. Initial ground-based thermospheric wind measurements using Doppler asymmetric spatial heterodyne spectroscopy (DASH)[J]. Optics Express, 2010, 18(26): 27416-27430. doi: 10.1364/OE.18.027416
    [8] LUO H Y, SHI H L, LI ZH W, et al. Thermal effect on optical properties of spatial heterodyne spectroscopy[J]. Spectroscopy and Spectral Analysis, 2014, 34(9): 2578-2581. (in Chinese). doi: 10.3964/j.issn.1000-0593(2014)09-2578-04
    [9] FU D, CHANG CH G, SUN J, et al. Separating and testing method for influencing factors of phase stability of Doppler asymmetric spatial heterodyne interferometer for atmospheric wind-field detection[J]. Acta Optica Sinica, 2022, 42(18): 1801003. (in Chinese). doi: 10.3788/AOS202242.1801003
    [10] ENGLERT C R, HARLANDER J M, BABCOCK D D, et al. Doppler asymmetric spatial heterodyne spectroscopy (DASH): an innovative concept for measuring winds in planetary atmospheres[J]. Proceedings of SPIE, 2007, 6303: 63030T.
    [11] ENGLERT C R, BABCOCK D D, HARLANDER J, et al. Doppler asymmetric spatial heterodyne spectroscopy (DASH): First laboratory demonstration of an innovative concept for measuring winds in planetary atmospheres[C]. 37th COSPAR Scientific Assembly. 2007: 272-279.
    [12] 沈静. 中高层大气风场探测多普勒非对称空间外差技术研究[D]. 合肥: 中国科学技术大学, 2017.

    SHEN J. Doppler asymmetric spatial heterodyne technique for wind detection in the upper atmosphere[D]. Hefei: University of Science and Technology of China, 2017. (in Chinese).
    [13] 况银丽. 基于非对称空间外差干涉仪的多普勒测速技术研究[D]. 中国科学院大学(中国科学院光电技术研究所), 2020.

    KUANG Y L. Research on radial velocity measurement technology based on Doppler asymmetric space heterodyne interferometer[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2020. (in Chinese).
    [14] 陈洁婧. 多普勒差分干涉光谱仪风速反演技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2017.

    CHEN J J. Study on Doppler asymmetric spatial heterodyne spectrometer in wind velocity retrieval[D]. Xi’an: Xi'an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2017. (in Chinese).
    [15] LUO H Y, LI SH, SHI H L, et al. Optical design of imaging system based on spatial heterodyne spectrometer[J]. Infrared and Laser Engineering, 2016, 45(8): 818005. doi: 10.3788/IRLA201645.0818005
    [16] LIU H, JIANG L, ZHANG X F, et al. Development of a doppler asymmetric spatial heterodyne interferometer for ground-based wind field detection at the 557.7 nm wavelength[J]. Chinese Optics, 2023, 16(5): 1226-1242. doi: 10.37188/CO.EN-2022-0018
    [17] FU D, ZHAO H X, LI J, et al. Simulation of mesosphere wind measurement with multiple emission lines of the O2(0-1) band using space-based Doppler asymmetric spatial heterodyne[J]. Atmosphere, 2022, 13(8): 1309. doi: 10.3390/atmos13081309
    [18] LI W W, HUI N J, LI C X, et al. A comparative study of three methods to detect the upper atmospheric wind speed by DASH[J]. Journal of Physics, 2023, 72(24): 240601. doi: 10.7498/aps.72.20231292
    [19] 朱承希. 红外成像系统的光机热集成分析及散热设计[D]. 上海: 中国科学院研究生院(上海技术物理研究所), 2014.

    ZHU CH X. Thermal/structural/optical integrated analysis and thermal design of infrared imaging system[D]. Shanghai: Shanghai Institute of Technology Physics, Chinese Academy of Sciences, 2014. (in Chinese).
    [20] WEI D K, ZHU Y J, LIU J, et al. Thermally stable monolithic Doppler asymmetric spatial heterodyne interferometer: optical design and laboratory performance[J]. Optics Express, 2020, 28(14): 19887-19900. doi: 10.1364/OE.394101
    [21] 尹诗. 实条纹空间外差成像光谱技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2018.

    YIN SH. Research on real-fringe spatial heterodyne imaging spectroscopy[D]. Xi'an: Xi'an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2018. (in Chinese).
    [22] 刘盛典. 非均匀温度变化对卡塞格伦式光学系统的影响分析[D]. 哈尔滨: 哈尔滨工业大学, 2015,doi: 10.7666/d.D754621.

    LIU SH D. Non uniform temperature change analysis of influence on the cassegrain optical system[D]. Harbin: Harbin Institute of Technology, 2015,doi: 10.7666/d.D754621. (in Chinese).
    [23] DU W F, LIU Y ZH, GAO W J, et al. Analysis of passive athermalization structure design and integrated opto-mechanical-thermal of zoom lens of photoelectric countermeasure platform[J]. Laser & Optoelectronics Progress, 2020, 57(13): 131204. (in Chinese).
    [24] ZHANG Y, DING ZH M, ZHAO H J, et al. Rigid-body displacement separation of optics in optical structural-thermal integrated analysis[J]. Infrared and Laser Engineering, 2012, 41(10): 2763-2767. (in Chinese). doi: 10.3969/j.issn.1007-2276.2012.10.039
    [25] DOYLE K B, Genberg V L, MICHELS G J, et al. Optical modeling of finite element surface displacements using commercial software[J]. Proceedings of SPIE, 2005, 5867: 58670I. doi: 10.1117/12.615336
    [26] 汪丽. 干涉法大气风场探测技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2007.

    WANG L. Study on wind measurement of atmosphere by interferometry technology[D]. Xi'an: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2007. (in Chinese).
    [27] ENGLERT C R, HARLANDER J M, BROWN C M, et al. Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI): instrument design and calibration[J]. Space Science Reviews, 2017, 212(1-2): 553-584. doi: 10.1007/s11214-017-0358-4
    [28] SHEN J, XIONG W, SHI H L, et al. Absolute phase drift analysis and correction of asymmetric spatial heterodyne interferometer for wind detection[J]. Acta Optica Sinica, 2017, 37(4): 0430003. (in Chinese). doi: 10.3788/AOS201737.0430003
    [29] HARLANDER J M, ENGLERT C R, BABCOCK D D. Design and laboratory tests of a Doppler Asymmetric Spatial Heterodyne (DASH) interferometefor upper atmospheric red line (630 nm) wind and temperature observations[C]. 38th COSPAR Scientific Assembly, 2010.
    [30] MARR K D, ENGLERT C R, HARLANDER J M. Measurement and modeling of the thermal behavior of a laboratory DASH interferometer[J]. Proceedings of SPIE, 2012, 8493: 849302. doi: 10.1117/12.928984
    [31] CAO Y Q. Design of double telecentric lens using machine vision system[J]. Infrared Technology, 2022, 44(2): 140-144. (in Chinese). doi: 10.11846/j.issn.1001-8891.2022.2.hwjs202202006
    [32] FENG Y T, FU D, ZHAO Z L, et al. An overview of spaceborne atmospheric wind field measurement with passive optical remote sensing[J]. Acta Optica Sinica, 2023, 43(6): 0601011. (in Chinese). doi: 10.3788/AOS221462
    [33] YANG Y, CHEN SH J, ZHANG W. Review of thermal-structural-optical integrated analysis of space remote sensor[J]. Optical Technique, 2005, 31(6): 913-917,920. (in Chinese). doi: 10.3321/j.issn:1002-1582.2005.06.038
  • 加载中
图(34) / 表(2)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  87
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-23
  • 修回日期:  2024-01-18
  • 录用日期:  2024-03-08
  • 网络出版日期:  2024-05-10

目录

    /

    返回文章
    返回