Opto-mechanical-thermal integration analysis of Doppler asymmetric spatial heterodyne interferometer
doi: 10.37188/CO.2023-0234
-
摘要:
为提高地基多普勒非对称空间外差(DASH)干涉仪在恶劣温度下的探测精度,对系统进行了光机热集成分析。首先,依据干涉仪的工作原理和相位算法建立了相位与温度的关联依据。接着,设计了光机热分析模型和热变形数据获取模型,采用温度负载仿真分析给出了干涉模块和成像光学系统在不同温度下的变形数据,拟合得到热变形所导致的相位误差。最后,基于各部件热变形造成的风速误差,给出合理的温控方案。结果表明,干涉模块占据主因,必须确保温度控制在(20±0.05) °C内,并针对温度敏感部件进行温度控制,此时,该部件造成的风速误差为3.8 m/s。成像光学系统放大倍数的热漂移、成像光学系统和探测器相对位置的热漂移占据次因,应将其控制在(20±2) °C以内,此时该部件造成的风速误差为3.05 m/s。通过以上措施可以将干涉模块、成像光学系统、成像光学系统与探测器的相对位置三者共同造成的风速测量误差控制在6.85 m/s内。本文的分析方案和温控措施可以为DASH干涉仪工程应用提供理论依据。
Abstract:In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne (DASH) interferometer in harsh temperatures, an opto-mechanical-thermal integration analysis is carried out. Firstly, the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer. Secondly, the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed. The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis, and the phase error caused by thermal deformation is obtained by fitting. Finally, based on the wind speed error caused by thermal deformation of each component, a reasonable temperature control scheme is proposed. The results show that the interference module occupies the main cause, the temperature must be controlled within (20±0.05) °C, and the temperature control should be carried out for the temperature sensitive parts, and the wind speed error caused by the part is 3.8 m/s. The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause, which should be controlled within (20±2) °C, and the wind speed error caused by the part is 3.05 m/s. In summary, the wind measurement error caused by interference module, imaging optical system, and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s. The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.
-
Table 1. Index parameters of DASH interferometer
Attribute Parameter Fore-optical system Field of view 5.314°×4° Clear aperture diameter 35 mm Interferometer module Littrow wavelength/nm 557.137 Target line wavelength/nm 557.7 Groove spacing/(gr·mm−1) 600 Littrow angle/(°) 9.6216 Interferometer offset/cm 1.75 Imaging-optical system F/# 7.35 Total length 223.5 mm Magnification 0.5899 Transmissivity 0.93 Detector CCD pixel size/μm 13 CCD pixel number 1024 Table 2. Material characteristics of interferometer
Elements Materials Young’s modulus (MPa) Poisson’s ratio Thermal conductivity
($ \mathrm{W}\cdot {\mathrm{m}\mathrm{m}}^{-1}\cdot {\mathrm{K}}^{-1} $)CET
($ {10}^{-7}\cdot {\mathrm{K}}^{-1} $)Beam splitting(BS) H-K9LAGT 81450 0.209 0.00075 72 Field-widening Prism(F1,F2) H-LaK2A 94150 0.295 0.00075 80 Gratings(G1,G2) Fused-Silica 74000 0.17 0.00138 5.1 Spacer(W1) H-FK6 70070 0.3 0.00075 131 Spacer(W2) Fused-Silica 740000 0.17 0.00138 5.1 Parallel bias(P1) H-K9LAGT 81450 0.209 0.00075 72 Mechanical shell,Work platform Al alloy2A12 72000 0.3 0.203 230 -
[1] YE S, FANG Y H, HONG J, et al. Development and application of spatial heterodyne spectroscopy[J]. Chinese Journal of Scientific Instrument, 2006, 27(6 Suppl 1): 983-985. (in Chinese). [2] SHEN J, WANG G J. Doppler asymmetric spatial external aberration spectroscopy for wind field detection[J]. Electronic Technology & Software Engineering, 2020(11): 95-97. (in Chinese). [3] BABCOCK D D. Development of a space flight prototype Doppler Asymmetric Spatial Heterodyne (DASH) spectrometer for the measurement of upper atmospheric winds[R]. ELLICOTT: ARTEP INC, 2011. [4] SOLHEIM B, BROWN S, SIORIS C, et al. SWIFT-DASH: spatial heterodyne spectroscopy approach to stratospheric wind and ozone measurement[J]. Atmosphere-Ocean, 2015, 53(1): 50-57. doi: 10.1080/07055900.2013.855160 [5] ENGLERT C R, HARLANDER J M, MARR K D, et al. Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI) on-orbit wind observations: data analysis and instrument performance[J]. Space Science Reviews, 2023, 219(3): 27. doi: 10.1007/s11214-023-00971-1 [6] 张亚飞. 星载热层风场探测多普勒差分干涉仪反演技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2023.ZHANG Y F. Research on wind field retrieval technology of spaceborne Doppler asymmetric spatical heterodyne interferometer[D]. Xi’an: Xi’an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2023. (in Chinese). [7] ENGLERT C R, HARLANDER J M, EMMERT J T, et al. Initial ground-based thermospheric wind measurements using Doppler asymmetric spatial heterodyne spectroscopy (DASH)[J]. Optics Express, 2010, 18(26): 27416-27430. doi: 10.1364/OE.18.027416 [8] LUO H Y, SHI H L, LI ZH W, et al. Thermal effect on optical properties of spatial heterodyne spectroscopy[J]. Spectroscopy and Spectral Analysis, 2014, 34(9): 2578-2581. (in Chinese). doi: 10.3964/j.issn.1000-0593(2014)09-2578-04 [9] FU D, CHANG CH G, SUN J, et al. Separating and testing method for influencing factors of phase stability of Doppler asymmetric spatial heterodyne interferometer for atmospheric wind-field detection[J]. Acta Optica Sinica, 2022, 42(18): 1801003. (in Chinese). doi: 10.3788/AOS202242.1801003 [10] ENGLERT C R, HARLANDER J M, BABCOCK D D, et al. Doppler asymmetric spatial heterodyne spectroscopy (DASH): an innovative concept for measuring winds in planetary atmospheres[J]. Proceedings of SPIE, 2007, 6303: 63030T. [11] ENGLERT C R, BABCOCK D D, HARLANDER J, et al. Doppler asymmetric spatial heterodyne spectroscopy (DASH): First laboratory demonstration of an innovative concept for measuring winds in planetary atmospheres[C]. 37th COSPAR Scientific Assembly. 2007: 272-279. [12] 沈静. 中高层大气风场探测多普勒非对称空间外差技术研究[D]. 合肥: 中国科学技术大学, 2017.SHEN J. Doppler asymmetric spatial heterodyne technique for wind detection in the upper atmosphere[D]. Hefei: University of Science and Technology of China, 2017. (in Chinese). [13] 况银丽. 基于非对称空间外差干涉仪的多普勒测速技术研究[D]. 中国科学院大学(中国科学院光电技术研究所), 2020.KUANG Y L. Research on radial velocity measurement technology based on Doppler asymmetric space heterodyne interferometer[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2020. (in Chinese). [14] 陈洁婧. 多普勒差分干涉光谱仪风速反演技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2017.CHEN J J. Study on Doppler asymmetric spatial heterodyne spectrometer in wind velocity retrieval[D]. Xi’an: Xi'an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2017. (in Chinese). [15] LUO H Y, LI SH, SHI H L, et al. Optical design of imaging system based on spatial heterodyne spectrometer[J]. Infrared and Laser Engineering, 2016, 45(8): 818005. doi: 10.3788/IRLA201645.0818005 [16] LIU H, JIANG L, ZHANG X F, et al. Development of a doppler asymmetric spatial heterodyne interferometer for ground-based wind field detection at the 557.7 nm wavelength[J]. Chinese Optics, 2023, 16(5): 1226-1242. doi: 10.37188/CO.EN-2022-0018 [17] FU D, ZHAO H X, LI J, et al. Simulation of mesosphere wind measurement with multiple emission lines of the O2(0-1) band using space-based Doppler asymmetric spatial heterodyne[J]. Atmosphere, 2022, 13(8): 1309. doi: 10.3390/atmos13081309 [18] LI W W, HUI N J, LI C X, et al. A comparative study of three methods to detect the upper atmospheric wind speed by DASH[J]. Journal of Physics, 2023, 72(24): 240601. doi: 10.7498/aps.72.20231292 [19] 朱承希. 红外成像系统的光机热集成分析及散热设计[D]. 上海: 中国科学院研究生院(上海技术物理研究所), 2014.ZHU CH X. Thermal/structural/optical integrated analysis and thermal design of infrared imaging system[D]. Shanghai: Shanghai Institute of Technology Physics, Chinese Academy of Sciences, 2014. (in Chinese). [20] WEI D K, ZHU Y J, LIU J, et al. Thermally stable monolithic Doppler asymmetric spatial heterodyne interferometer: optical design and laboratory performance[J]. Optics Express, 2020, 28(14): 19887-19900. doi: 10.1364/OE.394101 [21] 尹诗. 实条纹空间外差成像光谱技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2018.YIN SH. Research on real-fringe spatial heterodyne imaging spectroscopy[D]. Xi'an: Xi'an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2018. (in Chinese). [22] 刘盛典. 非均匀温度变化对卡塞格伦式光学系统的影响分析[D]. 哈尔滨: 哈尔滨工业大学, 2015,doi: 10.7666/d.D754621.LIU SH D. Non uniform temperature change analysis of influence on the cassegrain optical system[D]. Harbin: Harbin Institute of Technology, 2015,doi: 10.7666/d.D754621. (in Chinese). [23] DU W F, LIU Y ZH, GAO W J, et al. Analysis of passive athermalization structure design and integrated opto-mechanical-thermal of zoom lens of photoelectric countermeasure platform[J]. Laser & Optoelectronics Progress, 2020, 57(13): 131204. (in Chinese). [24] ZHANG Y, DING ZH M, ZHAO H J, et al. Rigid-body displacement separation of optics in optical structural-thermal integrated analysis[J]. Infrared and Laser Engineering, 2012, 41(10): 2763-2767. (in Chinese). doi: 10.3969/j.issn.1007-2276.2012.10.039 [25] DOYLE K B, Genberg V L, MICHELS G J, et al. Optical modeling of finite element surface displacements using commercial software[J]. Proceedings of SPIE, 2005, 5867: 58670I. doi: 10.1117/12.615336 [26] 汪丽. 干涉法大气风场探测技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2007.WANG L. Study on wind measurement of atmosphere by interferometry technology[D]. Xi'an: Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2007. (in Chinese). [27] ENGLERT C R, HARLANDER J M, BROWN C M, et al. Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI): instrument design and calibration[J]. Space Science Reviews, 2017, 212(1-2): 553-584. doi: 10.1007/s11214-017-0358-4 [28] SHEN J, XIONG W, SHI H L, et al. Absolute phase drift analysis and correction of asymmetric spatial heterodyne interferometer for wind detection[J]. Acta Optica Sinica, 2017, 37(4): 0430003. (in Chinese). doi: 10.3788/AOS201737.0430003 [29] HARLANDER J M, ENGLERT C R, BABCOCK D D. Design and laboratory tests of a Doppler Asymmetric Spatial Heterodyne (DASH) interferometefor upper atmospheric red line (630 nm) wind and temperature observations[C]. 38th COSPAR Scientific Assembly, 2010. [30] MARR K D, ENGLERT C R, HARLANDER J M. Measurement and modeling of the thermal behavior of a laboratory DASH interferometer[J]. Proceedings of SPIE, 2012, 8493: 849302. doi: 10.1117/12.928984 [31] CAO Y Q. Design of double telecentric lens using machine vision system[J]. Infrared Technology, 2022, 44(2): 140-144. (in Chinese). doi: 10.11846/j.issn.1001-8891.2022.2.hwjs202202006 [32] FENG Y T, FU D, ZHAO Z L, et al. An overview of spaceborne atmospheric wind field measurement with passive optical remote sensing[J]. Acta Optica Sinica, 2023, 43(6): 0601011. (in Chinese). doi: 10.3788/AOS221462 [33] YANG Y, CHEN SH J, ZHANG W. Review of thermal-structural-optical integrated analysis of space remote sensor[J]. Optical Technique, 2005, 31(6): 913-917,920. (in Chinese). doi: 10.3321/j.issn:1002-1582.2005.06.038