留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光系统相位延迟反射镜的研制

牛鸿琨 张静 付秀华 马国水 金海俊 杨飞

牛鸿琨, 张静, 付秀华, 马国水, 金海俊, 杨飞. 飞秒激光系统相位延迟反射镜的研制[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0015
引用本文: 牛鸿琨, 张静, 付秀华, 马国水, 金海俊, 杨飞. 飞秒激光系统相位延迟反射镜的研制[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0015
NIU Hong-kun, ZHANG Jing, FU Xiu-hua, MA Guo-shui, JIN Hai-jun, YANG Fei. Development of phase delay mirrors for femtosecond laser systems[J]. Chinese Optics. doi: 10.37188/CO.2024-0015
Citation: NIU Hong-kun, ZHANG Jing, FU Xiu-hua, MA Guo-shui, JIN Hai-jun, YANG Fei. Development of phase delay mirrors for femtosecond laser systems[J]. Chinese Optics. doi: 10.37188/CO.2024-0015

飞秒激光系统相位延迟反射镜的研制

doi: 10.37188/CO.2024-0015
基金项目: 吉林省科技发展计划项目资助(No. 20230101008JC);中国科学院青年创新促进会优秀会员(No. Y202053);中国科学院国际伙伴计划(No. 181722KYSB20200001);国家自然科学基金(No. 11973040);中山市精密光学薄膜创新科研团队项目(No. CXTD2023008)
详细信息
    作者简介:

    牛鸿琨(1999—),山东省聊城市人,2021 年于青岛理工大学理学院获得学士学位,目前在读于长春理工大学中山研究院,从事光学薄膜和器件方面的研究。E-mail:952560912@qq.com

    张 静(1984—),吉林长春人,博士,讲师,硕士生导师,主要从事光学薄膜、光学工艺等方面的研究。E-mail:465589960@qq.com

  • 中图分类号: O436

Development of phase delay mirrors for femtosecond laser systems

Funds: Supported by Science and Technology Development Plan Project of Jilin Province (No. 20230101008JC); Excellent Member of Youth Innovation Promotion Association CAS (No. Y202053); International Partnership Program of the Chinese Academy of Sciences (No. 181722KYSB20200001); National Natural Science Foundation of China (NSFC) (No. 11973040)
  • 摘要:

    为了能对飞秒激光系统的群延迟色散(group-delay dispersion,GDD)进行调控,设计并制备了相位延迟反射镜。本文系统的研究了相位延迟反射镜补偿群延迟色散的原理,使用Nb2O5和SiO2作为高低折射率材料,并通过将相位延迟反射镜与其互补镜配对的方式平缓了群延迟色散曲线。最后,制备出了相位调控数据为−800 fs2GDD的相位延迟的反射镜,在900 nm−1100 nm范围内,反射率达到99%以上。解决了飞秒激光系统带宽调节的问题,满足飞秒激光器的使用要求。

     

  • 图 1  G-T镜示意图

    Figure 1.  Schematic diagram of G-T mirror

    图 2  计算机拟合SiO2和Nb2O5光学常数曲线图

    Figure 2.  Computer fitting of SiO2 and Nb2O5 optical constant profiles

    图 3  相位延迟反色镜膜系结构

    Figure 3.  Structure of the film system of phase delayed mirrors

    图 4  设计得到的相位延迟反射镜的(a)反射率曲线与(b)群延迟色散曲线图

    Figure 4.  Plot of (a) reflectance curve and (b) group delay dispersion curve of the phase delayed reflector obtained by the design

    图 5  相位延迟反射镜互补镜对膜系结构

    Figure 5.  Structure of the film system of complementary mirror pairs for phase delayed mirror

    图 6  相位延迟反射镜与互补镜组合后的(a)反射率曲线与(b)群延迟色散曲线图

    Figure 6.  Plot of (a) reflectance curve and (b) group delay dispersion curve for the combination of the phase delay reflector and the complementary mirror

    图 7  计算和测量的相位延迟反射镜(a)反射率曲线与(b)群延迟色散曲线对比图

    Figure 7.  Measured and calculated phase delay reflector (a) reflectivity curve and (b) group delay dispersion curve

    图 8  Nb2O5材料折射率温度测试拟合结果

    Figure 8.  Refractive index test results of Nb2O5 material

    图 9  相位延迟反射镜反射率测量曲线

    Figure 9.  Curve for phase delay mirror reflectance measurement

    图 10  飞秒激光器示意图

    Figure 10.  Femtosecond laser framework

    图 11  飞秒激光系统的测量结果

    Figure 11.  Measurement results of femtosecond laser systems

    图 12  计算和设计的相位延迟反射镜的群延迟色散曲线

    Figure 12.  Calculated and designed group delay dispersion curves of phase delay mirror

    表  1  相位补偿反射镜的技术参数

    Table  1.   Technical parameters of high dispersion mirrors

    参数 具体
    基板 K9或者石英
    入射角度/° 0°−3°
    反射率/% ≥99%@970−1100 nm
    GDD/$ {fs}^{2} $ −800@1030 nm
    GDD/$ {fs}^{2} $ 0@1060 nm
    下载: 导出CSV

    表  2  薄膜材料沉积工艺参数

    Table  2.   Material deposition parameters

    材料 Nb2O5 SiO2
    基底温度( °C) 145 145
    工作真空(Pa) 7.7×10−1 5.2×10−1
    沉积速率(nm·s−1) 0.255 0.225
    ICP气体 O2+Ar O2+Ar
    ICP参数 Power: 2.2KW
    电压: 510 V
    电流: 14.5 A
    Power: 2.2KW
    电压: 730 V
    电流: 8.5 A
    下载: 导出CSV
  • [1] 刘文军, 任守田, 潘玉寨, 等. 基于多层膜系传输矩阵理论的双啁啾镜设计与实验[J]. 大学物理实验,2017,30(3):80-84.

    LIU W J, REN SH T, PAN Y ZH, et al. Design and experiment of double chirped mirrors based on transfer matrix theory[J]. Physical Experiment of College, 2017, 30(3): 80-84. (in Chinese).
    [2] 刘加, 王胭脂, 赵睿睿, 等. 飞秒脉冲钛宝石激光器中的低振荡高色散镜对[J]. 中国激光,2018,45(10):1003001. doi: 10.3788/CJL201845.1003001

    LIU J, WANG Y ZH, ZHAO R R, et al. Low vibration and high dispersion mirror pair in femtosecond pulsed Ti: sapphire laser[J]. Chinese Journal of Lasers, 2018, 45(10): 1003001. (in Chinese). doi: 10.3788/CJL201845.1003001
    [3] MELNIKAS S, GIMŽEVSKIS U, KIČAS S. Stress compensated back side coated chirped mirror with high negative dispersion[J]. Optics & Laser Technology, 2020, 121: 105820.
    [4] CHEN Y, HAHNER D, TRUBETSKOV M, et al. Suppression of group delay dispersion oscillations of highly dispersive mirrors by non-uniformity and post-deposition treatment[J]. Optics & Laser Technology, 2021, 142: 107192.
    [5] CHEN Y, WANG Y ZH, LU Y SH, et al. Design, production, and characterization of a pair of positive and negative high dispersive mirrors for chirped pulse amplification systems[J]. Optics Express, 2023, 31(9): 14521-14531. doi: 10.1364/OE.484287
    [6] 杨浩, 滕浩, 吕仁冲, 等. 基于同心展宽器的飞秒啁啾脉冲放大研究[J]. 量子电子学报,2022,39(4):566-573.

    YANG H, TENG H, LYU R CH, et al. Study on femtosecond chirped-pulse amplification based on concentric stretcher[J]. Chinese Journal of Quantum Electronics, 2022, 39(4): 566-573. (in Chinese).
    [7] 才玺坤, 张立超, 时光, 等. 离子束溅射制备低应力深紫外光学薄膜[J]. 中国光学,2016,9(6):649-655.

    CAI X K, ZHANG L CH, SHI G, et al. Low stress DUV optical coatings deposited by ion beam sputtering[J]. Chinese Optics, 2016, 9(6): 649-655. (in Chinese).
    [8] 梅禹珊, 付秀华, 杨永亮, 等. 光纤激光器光学膜设计与制备[J]. 中国光学,2011,4(3):299-304.

    MEI Y SH, FU X H, YANG Y L, et al. Design and preparation of optical films for fiber lasers[J]. Chinese Optics, 2011, 4(3): 299-304. (in Chinese).
    [9] YUAN W J, LI CH SH, SHEN W D, et al. Robust unbalanced Gires-Tournois mirror for group delay dispersion measurement evaluation by white light interferometer[J]. Optics & Laser Technology, 2023, 157: 108654.
    [10] JI X CH, DAI J L, ZHANG J L, et al. Group delay dispersion monitoring for computational manufacturing of dispersive mirrors[J]. Optics Express, 2023, 31(5): 8177-8189. doi: 10.1364/OE.483887
    [11] ZHANG Y H, WANG Y ZH, CHEN Y, et al. Ultra-broad bandwidth low-dispersion mirror with smooth dispersion and high laser damage resistance[J]. Optics Letters, 2023, 48(14): 3761-3764. doi: 10.1364/OL.497578
    [12] CHEN Y, LI W W, WANG Z L, et al. Complementary dispersive mirror pair produced in one coating run based on desired non-uniformity[J]. Optics Express, 2022, 30(18): 32074-32083. doi: 10.1364/OE.467664
    [13] AMOCHKINA T, TRUBETSKOV M. Designing broadband dispersive mirrors in the mid-infrared spectral range: a theoretical study[J]. Applied Optics, 2023, 62(7): B63-B72. doi: 10.1364/AO.477072
    [14] YUAN W J, SHEN W D, XIE CH, et al. High-dispersive mirror for pulse stretcher in femtosecond fiber laser amplification system[J]. Chinese Physics B, 2022, 31(8): 087801. doi: 10.1088/1674-1056/ac5e9a
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  34
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-15
  • 录用日期:  2024-03-15
  • 网络出版日期:  2024-05-17

目录

    /

    返回文章
    返回