留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子集成干涉阵列视场拼接子孔径光路设计

韩耀辉 王鹍 朱友强 刘欣悦

韩耀辉, 王鹍, 朱友强, 刘欣悦. 光子集成干涉阵列视场拼接子孔径光路设计[J]. 中国光学(中英文), 2024, 17(6): 1458-1466. doi: 10.37188/CO.2024-0030
引用本文: 韩耀辉, 王鹍, 朱友强, 刘欣悦. 光子集成干涉阵列视场拼接子孔径光路设计[J]. 中国光学(中英文), 2024, 17(6): 1458-1466. doi: 10.37188/CO.2024-0030
HAN Yao-hui, WANG Kun, ZHU You-qiang, LIU Xin-yue. Photonic-integrated interferometric array field-of-view splicing subaperture optical path design[J]. Chinese Optics, 2024, 17(6): 1458-1466. doi: 10.37188/CO.2024-0030
Citation: HAN Yao-hui, WANG Kun, ZHU You-qiang, LIU Xin-yue. Photonic-integrated interferometric array field-of-view splicing subaperture optical path design[J]. Chinese Optics, 2024, 17(6): 1458-1466. doi: 10.37188/CO.2024-0030

光子集成干涉阵列视场拼接子孔径光路设计

cstr: 32171.14.CO.2024-0030
基金项目: 国家自然科学基金资助项目(No. 12204476)
详细信息
    作者简介:

    刘欣悦(1973—),男,辽宁大连人,博士,研究员,博士生导师,1996年于清华大学获得学士学位,1999年、2006年于中国科学院大学分别获得硕士、博士学位,主要从事光学干涉成像等方面的研究。 E-mail:liuxinyue@ciomp.ac.c

  • 中图分类号: O439;TN256

Photonic-integrated interferometric array field-of-view splicing subaperture optical path design

Funds: Supported by National Natural Science Foundation of China (No. 12204476)
More Information
  • 摘要:

    光子集成干涉成像系统一般是在子孔径焦平面处加单模光纤阵列,通过接收不同视场角的光束完成大视场拼接成像,但直接采用光纤阵列会导致成像视场不连续、子孔径焦距变长、厚度大幅度增加。针对以上问题,本文提出了一种结合微透镜阵列和光纤阵列对子孔径像面细分的方法以实现视场无缝拼接,并通过摄远物镜和三透镜空间压缩板组合大幅度降低了子孔径阵列的整体厚度。设计结果表明:通过在光纤阵列前加65×65的微透镜阵列对光束进行二次聚焦能够实现系统视场无缝拼接,视场扩大65倍后,全视场为0.0489°;可见光入射时单模光纤阵列中各光纤中心空间光耦合效率不低于40%;在加入空间压缩板压缩自由空间光路后,系统的整体厚度压缩了1个数量级。该系统在实现光子集成干涉成像系统大视场无缝拼接成像的同时,为解决超长焦距镜头过厚的问题提供了新的思路。

     

  • 图 1  光子集成干涉阵列结构

    Figure 1.  Framework of photonic-integrated interferometric array

    图 2  传统扩视场原理图

    Figure 2.  Schematic diagram of conventional expanded FOV

    图 3  大视场无缝拼接成像原理图

    Figure 3.  Schematic diagram of large FOV seamless splicing imaging

    图 4  空间光与单模光纤耦合

    Figure 4.  Spatial light coupled to single-mode fiber

    图 5  子孔径成像原理图

    Figure 5.  Schematic diagram of subaperture imaging

    图 6  子孔径系统结构图

    Figure 6.  Structural diagram of subaperture system

    图 7  子孔径MTF曲线

    Figure 7.  Subaperture’s MTF curve

    图 8  子孔径系统点列图

    Figure 8.  Spot diagram of subaperture system

    图 9  系统点列图

    Figure 9.  Point diagram of the system

    图 10  系统MTF曲线

    Figure 10.  MTF curve of the system

    图 11  系统各视场辐照度

    Figure 11.  Irradiance in each field of view of the system

    表  1  子孔径设计参数

    Table  1.   Subaperture design parameters

    Parameters Specifications
    Wavelength/nm 400−680
    Field-of-view 2w 0.04809
    F-number 200.8
    Focal length/mm 9680.54
    Total length/mm 478.98
    Compression ratio 17.6
    Telephoto ratio 0.0495
    Back focal length/mm 30
    下载: 导出CSV

    表  2  单模光纤阵列参数

    Table  2.   Single-mode fiber array parameters

    Parameters Specifications
    Array number 65×65
    Core diameter/μm 3
    Cladding diameter/μm 125
    Numerical aperture 0.12
    Operating wavelength/nm 400~680
    mode field diameter/um
    (1/e2fit – near field)
    3.3@405 nm
    4.6@630 μm
    下载: 导出CSV

    表  3  微透镜阵列参数

    Table  3.   Microlens array parameters

    Parameters Specifications
    Array number 65×65
    Subunit shape Square
    materials Fused silica
    Focal length/mm 0.523
    Thickness/mm 0.5
    Microlens pitch/μm 125
    下载: 导出CSV

    表  4  系统参数

    Table  4.   System parameters

    Parameters Specifications
    Wavelength/nm 400~680
    Field-of-view 2w 0.04809
    F-number 5.2
    Focal length/mm −250.923
    Total length/mm 459.663
    Numerical Aperture 0.0958
    下载: 导出CSV

    表  5  各视场光纤耦合效率

    Table  5.   Fiber coupling efficiency of each field of view

    Field of viewFdC
    0.5653650.4445820.450298
    0.0170177°0.5872430.4043860.481939
    0.0236768°0.6100090.4248860.451323
    下载: 导出CSV

    表  6  子孔径公差

    Table  6.   Tolerance of subaperture

    Parameters Specifications
    Surface radius/mm ±0.02
    Thickness/mm ±0.02
    Surface decenter/mm ±0.02
    Surface tilt/° ±0.01
    Element decenter/mm ±0.05
    Element tilt/° ±0.02
    下载: 导出CSV

    表  7  子孔径公差分析结果

    Table  7.   Tolerance analysis result of subaperture

    ParametersSpecifications
    The average MTF0.35209144
    MTF value of 98%>0.21276278
    MTF value of 90%>0.27879303
    MTF value of 80%°>0.31568496
    MTF value of 50%>0.36178363
    MTF value of 20%>0.39748697
    MTF value of 10%>0.40812805
    MTF value of 2%>0.42106348
    下载: 导出CSV

    表  8  光纤耦合机械位置容差

    Table  8.   Mechancial position tolerance of fiber coupling

    Parameters Specifications
    Longitudinal tolerance/mm ±0.025
    Transvers tolerance/μm 0.711
    angular deviation/° ±3
    下载: 导出CSV
  • [1] BORN M, WOLF E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light[M]. 7th ed. Cambridge: Cambridge University Press, 1999.
    [2] 苏云, 葛婧菁, 王业超, 等. 航天高分辨率对地光学遥感载荷研究进展[J]. 中国光学(中英文),2023,16(2):258-282. doi: 10.37188/CO.2022-0085

    SU Y, GE J J, WANG Y CH, et al. Research progress on high-resolution imaging system for optical remote sensing in aerospace[J]. Chinese Optics, 2023, 16(2): 258-282. (in Chinese). doi: 10.37188/CO.2022-0085
    [3] KENDRICK R, DUNCAN A, WILM J, et al. Flat panel space based space surveillance sensor[C]. Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2013.
    [4] BADHAM K, KENDRICK R L, WUCHENICH D, et al. Photonic integrated circuit-based imaging system for SPIDER[C]. Proceedings of 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), IEEE, 2017: 1-5.
    [5] DUNCAN A, KENDRICK R, THURMAN S, et al. SPIDER: next generation chip scale imaging sensor[C]. Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, 2015: 27.
    [6] SCOTT R P, SU T H, OGDEN C, et al. Demonstration of a photonic integrated circuit for multi-baseline interferometric imaging[C]. Proceedings of 2014 IEEE Photonics Conference, IEEE, 2014: 1-2.
    [7] CHEN H, ON M B, YUN-JHU-LEE, et al. Photonic interferometric imager with monolithic silicon CMOS photonic integrated circuits[C]. Optical Fiber Communication Conference 2022, Optica Publishing Group, 2022: Tu2I. 2.
    [8] GAO W P, YUAN Y, WANG X R, et al. Quantitative analysis and optimization design of the segmented planar integrated optical imaging system based on an inhomogeneous multistage sampling lens array[J]. Optics Express, 2021, 29(8): 11869-11884. doi: 10.1364/OE.421298
    [9] WANG K, ZHU Y Q, AN Q CH, et al. Even sampling photonic-integrated interferometric array for synthetic aperture imaging[J]. Optics Express, 2022, 30(18): 32119-32128. doi: 10.1364/OE.468499
    [10] 于海滨, 陈蓓曦, 潘枝峰, 等. 光子集成干涉成像系统微透镜排布设计与图像复原[J]. 应用光学,2022,43(2):213-220. doi: 10.5768/JAO202243.0201005

    YU H B, CHEN B X, PAN ZH F, et al. Arrangement of microlens and image restoration technology of photon integrated interferometric imaging system[J]. Journal of Applied Optics, 2022, 43(2): 213-220. (in Chinese). doi: 10.5768/JAO202243.0201005
    [11] CHEN T B, ZENG X F, ZHANG ZH Y, et al. REM: a simplified revised entropy image reconstruction for photonics integrated interference imaging system[J]. Optics Communications, 2021, 501: 127341. doi: 10.1016/j.optcom.2021.127341
    [12] GOODMAN J W. Statistical Optics[M]. Hoboken: John Wiley & Sons, 2015.
    [13] GUYON O. Wide field interferometric imaging with single-mode fibers[J]. Astronomy & Astrophysics, 2002, 387(1): 366-378.
    [14] RUILIER C. Degraded light coupling into single-mode fibers[J]. Proceedings of SPIE, 1998, 3350: 319-329. doi: 10.1117/12.317094
    [15] SORENSEN N J, WEIL M T, LUNDEEN J S. Large-scale optical compression of free-space using an experimental three-lens spaceplate[J]. Optics Express, 2023, 31(12): 19766-19776. doi: 10.1364/OE.487255
  • 加载中
图(11) / 表(8)
计量
  • 文章访问数:  165
  • HTML全文浏览量:  94
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-05
  • 修回日期:  2024-02-26
  • 录用日期:  2024-04-15
  • 网络出版日期:  2024-05-07

目录

    /

    返回文章
    返回