留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双液晶偏振光栅系统的倾斜误差特性分析

方远翔 江伦 裴惠熠 王锦疆 崔勇 张家铭

方远翔, 江伦, 裴惠熠, 王锦疆, 崔勇, 张家铭. 双液晶偏振光栅系统的倾斜误差特性分析[J]. 中国光学(中英文), 2024, 17(6): 1387-1396. doi: 10.37188/CO.2024-0041
引用本文: 方远翔, 江伦, 裴惠熠, 王锦疆, 崔勇, 张家铭. 双液晶偏振光栅系统的倾斜误差特性分析[J]. 中国光学(中英文), 2024, 17(6): 1387-1396. doi: 10.37188/CO.2024-0041
FANG Yuan-xiang, JIANG Lun, PEI Hui-yi, WANG Jin-jiang, CUI Yong, ZHANG Jia-ming. Tilt error’s characteristic analysis of dual liquid crystal polarization grating system[J]. Chinese Optics, 2024, 17(6): 1387-1396. doi: 10.37188/CO.2024-0041
Citation: FANG Yuan-xiang, JIANG Lun, PEI Hui-yi, WANG Jin-jiang, CUI Yong, ZHANG Jia-ming. Tilt error’s characteristic analysis of dual liquid crystal polarization grating system[J]. Chinese Optics, 2024, 17(6): 1387-1396. doi: 10.37188/CO.2024-0041

双液晶偏振光栅系统的倾斜误差特性分析

cstr: 32171.14.CO.2024-0041
基金项目: 国家重点研发计划(No. 2022YFB3902502)
详细信息
    作者简介:

    江 伦(1984—),男,吉林长春人,博士,研究员,博士生导师,2012年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事光学系统设计、空间光学与空间光通信技术的研究。E-mail:jlciomp@163.com

  • 中图分类号: TH774

Tilt error’s characteristic analysis of dual liquid crystal polarization grating system

Funds: Supported by National Key Research and Development Program of China (No. 2022YFB3902502)
More Information
  • 摘要:

    为了精确控制激光光束指向,本文基于双液晶偏振光栅系统的光束指向算法,分析了系统中因光栅倾斜产生的误差。首先,采用一种基于衍射光栅方程的光线追迹方法求解出射光束指向,引入了入射光束指向和光栅倾斜角,通过与仿真结果进行对比,验证了该方法的正确性和精度。其次,通过对光栅不同倾斜情况的分析,本文给出了不同倾斜情况下光栅姿态的表达式,并结合光线追迹法得到了相应的出射光束指向表达式,并进一步分析了光栅倾斜产生的调零误差和旋转误差。研究结果表明,在0°~0.3°光栅倾斜角范围内,调零误差分别在0.25 mrad和2 mrad以内,旋转误差分别在85 mrad和430 mrad左右。本文方法可实现对双液晶偏振光栅系统中出射光束指向和光栅倾斜误差的精确计算。

     

  • 图 1  理想状态下的dLCPG结构图

    Figure 1.  Structral diagram of dLCPG under ideal state

    图 2  光栅方程向量形式示意图

    Figure 2.  Schematic diagram of the grating equations in vector form

    图 3  单片光栅的两种倾斜状态

    Figure 3.  Two types of tilt situations of a single grating

    图 4  dLCPG的四种倾斜状态

    Figure 4.  The four types of tilting situations of dLCPG

    图 5  dLCPG的光学结构

    Figure 5.  The optical structure of dLCPG

    图 6  状态1下dLCPG的光学结构

    Figure 6.  The optical structure of dLCPG in situation 1

    图 7  状态2下dLCPG的光学结构

    Figure 7.  The optical structure of dLCPG in situation 2

    图 8  状态3下dLCPG的光学结构

    Figure 8.  The optical structure of dLCPG in situation 3

    图 9  状态4下dLCPG的光学结构

    Figure 9.  The optical structure of dLCPG in situation 4

    图 10  调零误差的方位角范围

    Figure 10.  Range of azimuth of zeroing error

    图 11  调零误差的俯仰角范围

    Figure 11.  Range of pitch of zeroing error

    图 12  光栅1旋转角误差范围

    Figure 12.  Range of rotation angle error of grating 1

    图 13  光栅2旋转角误差范围

    Figure 13.  Range of rotation angle error of grating 2

    表  1  光栅旋转角为变量时的验证结果

    Table  1.   Verification results when the grating’s rotation angle is variable

    光栅1
    旋转角
    $ {\theta _1} $(°)
    光栅2
    旋转角
    $ {\theta _2} $(°)
    关系式(rad) 仿真(rad)
    $ \varTheta $ $ \varPhi $ $ \varTheta $ $ \varPhi $
    0 0 0 0.0873 0 0.0873
    30 0 5.5260 0.0959 5.5260 0.0959
    60 0 4.9022 0.1159 4.9022 0.1159
    90 0 4.3944 0.1380 4.3944 0.1380
    120 0 3.9514 0.1563 3.9514 0.1563
    150 0 3.5401 0.1680 3.5401 0.1680
    180 0 3.1416 0.1720 3.1416 0.1720
    0 30 0.5585 0.1242 0.5585 0.1242
    0 60 0.6339 0.1919 0.6339 0.1919
    0 90 0.5331 0.2569 0.5331 0.2569
    0 120 0.3733 0.3086 0.3733 0.3086
    0 150 0.1907 0.3415 0.1907 0.3415
    0 180 0 0.3528 0 0.3528
    下载: 导出CSV

    表  2  光栅倾斜角为变量时的验证结果

    Table  2.   Verification results when the grating’s tilt angle is variable

    光栅1
    倾斜角
    $ {t_1} $(°)
    光栅2
    倾斜角
    $ {t_2} $(°)
    关系式(rad) 仿真(rad)
    $ \varTheta $ $ \varPhi $ $ \varTheta $ $ \varPhi $
    0 0 0.50004 0.22072 0.50004 0.22072
    1 0 0.49900 0.22101 0.49900 0.22101
    2 0 0.49784 0.22134 0.49784 0.22134
    3 0 0.49656 0.22170 0.49656 0.22170
    4 0 0.49515 0.22210 0.49515 0.22210
    5 0 0.49363 0.22254 0.49363 0.22254
    0 1 0.50007 0.22072 0.50007 0.22072
    0 2 0.50028 0.22073 0.50028 0.22073
    0 3 0.50065 0.22076 0.50065 0.22076
    0 4 0.50119 0.22080 0.50119 0.22080
    0 5 0.50190 0.22086 0.50190 0.22086
    下载: 导出CSV

    表  3  入射光束指向为变量时的验证结果

    Table  3.   Verification results when the pointing of the incident light beam is variable

    入射光束
    指向方位角
    $ {\varTheta _0} $(°)
    入射光束
    指向俯仰角
    $ {\varPhi _0} $(°)
    关系式(rad) 仿真(rad)
    $ \varTheta $ $ \varPhi $ $ \varTheta $ $ \varPhi $
    45 1 0.6639 0.1512 0.6639 0.1512
    90 1 0.6908 0.1382 0.6908 0.1382
    135 1 0.7807 0.1322 0.7807 0.1322
    180 1 0.8705 0.1378 0.8705 0.1378
    225 1 0.8966 0.1506 0.8966 0.1506
    270 1 0.8559 0.1626 0.8559 0.1626
    315 1 0.7794 0.1676 0.7794 0.1676
    360 1 0.7035 0.1631 0.7035 0.1631
    0 1 0.7035 0.1631 0.7035 0.1631
    0 2 0.6387 0.1771 0.6387 0.1771
    0 3 0.5835 0.1918 0.5835 0.1918
    0 4 0.5363 0.2070 0.5363 0.2070
    0 5 0.4955 0.2227 0.4955 0.2227
    下载: 导出CSV
  • [1] BUCK J, SERATI S, HOSTING L, et al. Polarization gratings for non-mechanical beam steering applications[J]. Proceedings of SPIE, 2012, 8395: 83950F. doi: 10.1117/12.921688
    [2] DILLON T E, SCHUETZ C A, MARTIN R D, et al. Nonmechanical beam steering using optical phased arrays[J]. Proceedings of SPIE, 2011, 8184: 81840F. doi: 10.1117/12.898356
    [3] 王灿进, 孙涛, 李正炜. 基于快速轮廓转动力矩特征的激光主动成像目标识别[J]. 中国光学,2015,8(5):775-784. doi: 10.3788/co.20150805.0775

    WANG C J, SUN T, LI ZH W. Target recognition in laser active imaging based on fast contour torque features[J]. Chinese Optics, 2015, 8(5): 775-784. (in Chinese). doi: 10.3788/co.20150805.0775
    [4] 王新华, 黄玮, 欧阳继红. 多探测器拼接成像系统实时图像配准[J]. 中国光学,2015,8(2):211-219. doi: 10.3788/co.20150802.0211

    WANG X H, HUANG W, OUYANG J H. Real-time image registration of the multi-detectors mosaic imaging system[J]. Chinese Optics, 2015, 8(2): 211-219. (in Chinese). doi: 10.3788/co.20150802.0211
    [5] 郭巳秋, 许廷发, 王洪庆, 等. 改进的粒子群优化目标跟踪方法[J]. 中国光学,2014,7(5):759-767.

    GUO S Q, XU T F, WANG H Q, et al. Object tracking method based on improved particle swarm optimization[J]. Chinese Optics, 2014, 7(5): 759-767. (in Chinese).
    [6] 潘国涛, 闫钰锋, 于信, 等. 矩形大口径激光光束质量评价光学系统设计[J]. 中国光学,2022,15(2):306-317. doi: 10.37188/CO.2021-0130

    PAN G T, YAN Y F, YU X, et al. Design of optical system for quality evaluation of a large rectangular aperture laser beam[J]. Chinese Optics, 2022, 15(2): 306-317. (in Chinese). doi: 10.37188/CO.2021-0130
    [7] 张新荣, 王鑫, 王瑶, 等. 基于转动式二维激光扫描仪和多传感器的三维重建方法[J]. 中国光学(中英文),2023,16(3):663-672. doi: 10.37188/CO.2022-0159

    ZHANG X R, WANG X, WANG Y, et al. 3D reconstruction method based on a rotating 2D laser scanner and multi-sensor[J]. Chinese Optics, 2023, 16(3): 663-672. (in Chinese). doi: 10.37188/CO.2022-0159
    [8] TAN L. Liquid crystal polarization gratings and their applications[D]. Hong Kong, China: The Hong Kong University of Science and Technology, 2013.
    [9] JONES W M. Development of switchable polarization gratings for highly efficient liquid crystal displays[D]. Raleigh: North Carolina State University, 2006.
    [10] KIM J, OH C, ESCUTI M J, et al. Wide-angle nonmechanical beam steering using thin liquid crystal polarization gratings[J]. Proceedings of SPIE, 2008, 7093: 709302. doi: 10.1117/12.795752
    [11] OH C, KIM J, MUTH J F, et al. A new beam steering concept: Risley gratings[J]. Proceedings of SPIE, 2009, 7466: 74660J. doi: 10.1117/12.828005
    [12] 赵志伟. 大偏转角液晶偏振光栅的研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020.

    ZHAO ZH W. Study on liquid crystal polarization grating with large deflection angle[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2020. (in Chinese).
    [13] KIM J, MISKIEWICZ M N, SERATI S, et al. High efficiency quasi-ternary design for nonmechanical beam-steering utilizing polarization gratings[J]. Proceedings of SPIE, 2010, 7816: 78160G. doi: 10.1117/12.860885
    [14] 李松振. 液晶偏振光栅的设计及其光偏转特性研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2019.

    LI S ZH. Design of liquid crystal polarization grating and study of its beam deflection characteristics[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2019. (in Chinese).
    [15] 刘壮, 王启东, 王超, 等. 正交级联液晶偏振光栅角度偏转模型[J]. 光子学报,2021,50(11):1105003. doi: 10.3788/gzxb20215011.1105003

    LIU ZH, WANG Q D, WANG CH, et al. Deflection angular model of orthogonal cascade liquid crystal polarization gratings[J]. Acta Photonica Sinica, 2021, 50(11): 1105003. (in Chinese). doi: 10.3788/gzxb20215011.1105003
    [16] 刘壮, 王启东, 史浩东, 等. 正交级联液晶偏振光栅的收发分离结构设计[J]. 红外与激光工程,2021,50(11):20210551. doi: 10.3788/IRLA20210551

    LIU ZH, WANG Q D, SHI H D, et al. Design of transceiver separation structure for orthogonal cascaded liquid crystal polarization gratings[J]. Infrared and Laser Engineering, 2021, 50(11): 20210551. (in Chinese). doi: 10.3788/IRLA20210551
    [17] 郑青泉, 王春阳, 王子硕, 等. 斜入射下液晶偏振光栅衍射特性研究[J]. 红外与激光工程,2022,51(7):20210511. doi: 10.3788/IRLA20210511

    ZHENG Q Q, WANG CH Y, WANG Z SH, et al. Research on diffraction characteristics of liquid crystal polarization grating under oblique incidence[J]. Infrared and Laser Engineering, 2022, 51(7): 20210511. (in Chinese). doi: 10.3788/IRLA20210511
    [18] SAKAMOTO M, NHAN H T, NODA K, et al. Polarized beam steering using multiply-cascaded rotating polarization gratings[J]. Applied Optics, 2021, 60(7): 2062-2068. doi: 10.1364/AO.416089
    [19] WANG Z SH, WANG CH Y, LIANG SH N, et al. Diffraction characteristics of a non-mechanical beam steering system with liquid crystal polarization gratings[J]. Optics Express, 2022, 30(5): 7319-7331. doi: 10.1364/OE.452397
    [20] WANG J, GAO L, JIANG L, et al. Establishment and verification of formulas of target tracking based on dual liquid crystal polarization gratings[J]. Optics Express, 2022, 30(24): 43062-43077. doi: 10.1364/OE.473947
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  179
  • HTML全文浏览量:  114
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-01
  • 修回日期:  2024-03-21
  • 录用日期:  2024-07-01
  • 网络出版日期:  2024-08-21

目录

    /

    返回文章
    返回