留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于组合结构的双界面液体透镜的设计与分析

刘悦 孔梅梅 徐春生 董媛 薛银燕 李明洋 张舒涵

刘悦, 孔梅梅, 徐春生, 董媛, 薛银燕, 李明洋, 张舒涵. 基于组合结构的双界面液体透镜的设计与分析[J]. 中国光学(中英文), 2024, 17(6): 1255-1264. doi: 10.37188/CO.2024-0068
引用本文: 刘悦, 孔梅梅, 徐春生, 董媛, 薛银燕, 李明洋, 张舒涵. 基于组合结构的双界面液体透镜的设计与分析[J]. 中国光学(中英文), 2024, 17(6): 1255-1264. doi: 10.37188/CO.2024-0068
LIU Yue, KONG Mei-mei, XU Chun-sheng, DONG Yuan, XUE Yin-yan, LI Ming-yang, ZHANG Shu-han. Design and analysis of the double-interface liquid lens based on a combination structure[J]. Chinese Optics, 2024, 17(6): 1255-1264. doi: 10.37188/CO.2024-0068
Citation: LIU Yue, KONG Mei-mei, XU Chun-sheng, DONG Yuan, XUE Yin-yan, LI Ming-yang, ZHANG Shu-han. Design and analysis of the double-interface liquid lens based on a combination structure[J]. Chinese Optics, 2024, 17(6): 1255-1264. doi: 10.37188/CO.2024-0068

基于组合结构的双界面液体透镜的设计与分析

cstr: 32171.14.CO.2024-0068
基金项目: 国家自然科学基金(No. 61905117,No. 61775102)
详细信息
    作者简介:

    孔梅梅(1983—),女,江苏南京人,博士,副教授,硕士生导师,2009 年于南京理工大学光学工程专业获得工学博士学位,现任职于南京邮电大学电子与光学工程学院,一直从事光学设计、视光学理论与微流控光学技术相关方面的教学与科研工作。 E-mail:kongmm@njupt.edu.cn

  • 中图分类号: O436

Design and analysis of the double-interface liquid lens based on a combination structure

Funds: Supported by National Natural Science Foundation of China (No. 61905117, No. 61775102)
More Information
  • 摘要:

    为了提高液体透镜的成像质量和变焦范围,应用介电泳和液压驱动,设计了一款基于组合结构的双界面液体透镜,其主要由介电泳双液体透镜和PDMS薄膜液体透镜组成。首先,在Comsol软件中建立液体透镜模型,研究不同电压下的液滴界面和PDMS薄膜的面型变化,并导出两个曲面的面型数据。其次,在Matlab软件中,采用非球面表达式进行拟合,得到不同电压下液滴的界面和薄膜的面型图及其相应的非球面系数。最后,在Zemax软件中,构建出相应的双界面组合液体透镜光学模型,像面选取为高斯像面,并通过相应器件的制备与初步实验研究,将仿真结果和实验数据进行比较分析。结果表明,所设计的基于组合结构的双界面液体透镜仿真和实验的变焦范围基本一致,同时实验获得的变焦比可达2.1254、成像分辨率最大可达101.5937 lp/mm。本文设计的基于组合结构的双界面液体透镜具有结构简单紧凑、界面可调控性强、成像分辨率高的优点。

     

  • 图 1  基于组合结构的双界面液体透镜结构示意图

    Figure 1.  Structral diagrams of the double-interface liquid lens based on combination structure

    图 2  利用软件进行双界面组合液体透镜建模的仿真流程图

    Figure 2.  Simulation flow chart of the double-interface combined liquid lens modeling using software

    图 3  利用Comsol软件建立的双界面组合液体透镜模型

    Figure 3.  The double-interface combined liquid lens modeling with Comsol software

    图 4  利用Comsol拟合得到的不同电压下的液滴面型变化示意图

    Figure 4.  Schematic diagrams of droplet pattern changes fitted with Comsol under different voltages

    图 5  不同电压下,拟合得到的液滴面型示意图

    Figure 5.  Schematic diagrams of the fitted surface of droplet interfaces under different voltages

    图 6  PDMS膜在不同注液量下的Matlab拟合图。(a)注液量为0.05 mL;(b)注液量为0.3 mL

    Figure 6.  Fitting graphs of PDMS membrane fitted with Matlab under different volumes of injected liquid. Volume of injected liquid are (a) 0.05 mL and (b) 0.3 mL

    图 7  未注入液体(0 mL)薄膜未形变时不同电压下的组合液体透镜的光路图

    Figure 7.  Optical path diagrams of the combined liquid lens without injected liquid (0 mL) and membrane non-deformation under different voltages

    图 8  同一电压(200 V)不同注液量下的组合液体透镜光路图

    Figure 8.  Optical path diagrams of the combined liquid lens at the same voltage (200 V) under different volumes of injected liquid

    图 9  所制备的基于组合结构的双界面液体透镜实物图。(a)注液量为 0 mL;(b)注液量为 0.2 mL

    Figure 9.  Physical drawing of the double-interface liquid lens based on combined structure. Volume of injected liquid are (a) 0 mL and (b) 0.2 mL

    图 10  不同电压下的组合液体透镜的面型变化图

    Figure 10.  Surface variation of the combined liquid lens at different voltages

    图 11  未注入液体(0 mL)薄膜未形变时不同电压下的仿真和实验的变焦范围对比图

    Figure 11.  Comparison of variable focal length range of the combined liquid lens without injected liquid (0 mL) and membrane non-deformation in simulation and experiment at different voltages

    图 12  同一电压(200 V)不同注液量下的仿真和实验的变焦范围对比图

    Figure 12.  Comparison of variable focal length range of the combined liquid lens in simulation and experiment at the same voltage (200 V) under different injection volumes

    图 13  不同电压和注液量下双界面组合液体透镜的分辨率图

    Figure 13.  Resolution diagrams of the double-interface combined liquid lens at different voltages under different injection volumes

    表  1  不同电压下的液滴中心高度

    Table  1.   Heights of droplet center under different voltages

    电压/V 高度/mm
    0 1.703
    40 1.711
    80 1.736
    120 1.777
    160 1.835
    200 1.888
    下载: 导出CSV

    表  2  双界面组合液体透镜光学模型的结构参数(200 V,0.05 mL)

    Table  2.   Structural parameters of the optical model of the double-interface combined liquid lens (200 V, 0.05 mL)

    表面类型 曲率半径 厚度/ mm 材料 通光孔径/ mm b c d e f
    Object(标准面) 无限 无限 0
    1(标准面) 无限 0.7 BK7 6.5
    2(标准面) 无限 1.888 甲基硅油 1.6
    STO(偶次非球面) 无限 2.112 去离子水 1.6 −0.195 −0.995 0.744 −0.234 0.025
    4(标准面) 无限 0.7 BK7 6.5
    5(标准面) 无限 10.760 去离子水 6.5
    6 (偶次非球面) 无限 14.737 6.5 −0.018 −5.56×10−6 −6.28×10−9 9.19×10−11 −1.09×10−12
    IMA(标准面) 无限 5.281
    下载: 导出CSV
  • [1] 王琼华, 刘超, 王迪, 等. 液体光子器件[M]. 北京: 科学出版社, 2021.

    WANG Q H, LIU CH, WANG D, et al. Liquid Photonic Device[M]. Beijing: Science Press, 2021. (in Chinese).
    [2] 甘俊杰, 李磊. 可补偿像差的PDMS液体透镜[J]. 光电工程,2022,49(05):210404.

    GAN J J, LI L. PDMS liquid lens with corrected abberations[J]. Opto-Electronic Engineering, 2022, 49(05): 210404. (in Chinese).
    [3] CHENG C C, CHANG C A, YEH J A. Variable focus dielectric liquid droplet lens[J]. Optics Express, 2006, 14(9): 4101-4106. doi: 10.1364/OE.14.004101
    [4] REN H W, WU S T. Tunable-focus liquid microlens array using dielectrophoretic effect[J]. Optics Express, 2008, 16(4): 2646-2652. doi: 10.1364/OE.16.002646
    [5] XU M, WANG X H, REN H W. Tunable focus liquid lens with radial-patterned electrode[J]. Micromachines, 2015, 6(8): 1157-1165. doi: 10.3390/mi6081157
    [6] JIN B Y, REN H W, CHOI W K. Dielectric liquid lens with chevron-patterned electrode[J]. Optics Express, 2017, 25(26): 32411-32419. doi: 10.1364/OE.25.032411
    [7] CHEN Q M, LI T H, LI ZH H, et al. Dielectrophoresis-actuated liquid lenses with dual air/liquid interfaces tuned from biconcave to biconvex[J]. Lab on a Chip, 2018, 18(24): 3849-3854. doi: 10.1039/C8LC00999F
    [8] REN H W, WU S T. Variable-focus liquid lens[J]. Optics Express, 2007, 15(10): 5931-5936. doi: 10.1364/OE.15.005931
    [9] YU H B, ZHOU G Y, LEUNG H M, et al. Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation[J]. Optics Express, 2010, 18(10): 9945-9954. doi: 10.1364/OE.18.009945
    [10] DU J W, WANG X Y, LIANG D. Bionic optical imaging system with aspheric solid–liquid mixed variable-focus lens[J]. Optical Engineering, 2016, 55(2): 023105. doi: 10.1117/1.OE.55.2.023105
    [11] 陈帅. PDMS薄膜型可变焦液体透镜研究[D]. 杭州: 浙江大学, 2018.

    CHEN SH. Study on the variable focus liquid lens using PDMS membrane[D]. Hangzhou: Zhejiang University, 2018. (in Chinese).
    [12] ZHOU H, ZHANG X F, XU Z J, et al. Universal membrane-based tunable liquid lens design for dynamically correcting spherical aberration over user-defined focal length range[J]. Optics Express, 2019, 27(26): 37667-37679. doi: 10.1364/OE.27.037667
    [13] 孔梅梅, 刘悦, 董媛, 等. 基于平面电极的非球面双液体透镜的设计与分析[J]. 物理学报,2023,72(15):154206. doi: 10.7498/aps.72.20230758

    KONG M M, LIU Y, DONG Y, et al. Design and analysis of aspherical double-liquid lens based on planar electrode[J]. Acta Physica Sinica, 2023, 72(15): 154206. (in Chinese). doi: 10.7498/aps.72.20230758
    [14] REN H W, WU S T. Variable-focus liquid lens by changing aperture[J]. Applied Physics Letters, 2005, 86(21): 211107. doi: 10.1063/1.1935749
    [15] KUWANO R, TOKUNAGA T, OTANI Y, et al. Liquid pressure varifocus lens[J]. Optical Review, 2005, 12(5): 405-408. doi: 10.1007/s10043-005-0405-3
    [16] CU-NGUYEN P H, GREWE A, HILLENBRAND M, et al. Tunable hyperchromatic lens system for confocal hyperspectral sensing[J]. Optics Express, 2013, 21(23): 27611-27621. doi: 10.1364/OE.21.027611
    [17] KUIPER S, HENDRIKS B H W. Variable-focus liquid lens for miniature cameras[J]. Applied Physica Letters, 2004, 85(7): 1128-1130. doi: 10.1063/1.1779954
    [18] REN L CH, PARK S, REN H W, et al. Adaptive liquid lens by changing aperture[J]. Journal of Microelectromechanical Systems, 2012, 21(4): 953-958. doi: 10.1109/JMEMS.2012.2194777
    [19] PATRA R, AGARWAL S, KONDARAJU S, et al. Membrane-less variable focus liquid lens with manual actuation[J]. Optics Communications, 2017, 389: 74-78. doi: 10.1016/j.optcom.2016.12.021
    [20] 孔梅梅, 潘世成, 袁东, 等. 方腔结构非球面液体透镜的设计与分析[J]. 激光与光电子学进展,2023,60(21):2122005.

    KONG M M, PAN SH CH, YUAN D, et al. Design and analysis of aspheric liquid lens with square cavity structure[J]. Laser & Optoelectronics Progress, 2023, 60(21): 2122005. (in Chinese).
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  121
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-10
  • 修回日期:  2024-05-09
  • 录用日期:  2024-07-05
  • 网络出版日期:  2024-08-21

目录

    /

    返回文章
    返回