Design and analysis of the double-interface liquid lens based on a combination structure
-
摘要:
为了提高液体透镜的成像质量和变焦范围,应用介电泳和液压驱动,设计了一款基于组合结构的双界面液体透镜,其主要由介电泳双液体透镜和PDMS薄膜液体透镜组成。首先,在Comsol软件中建立液体透镜模型,研究不同电压下的液滴界面和PDMS薄膜的面型变化,并导出两个曲面的面型数据。其次,在Matlab软件中,采用非球面表达式进行拟合,得到不同电压下液滴的界面和薄膜的面型图及其相应的非球面系数。最后,在Zemax软件中,构建出相应的双界面组合液体透镜光学模型,像面选取为高斯像面,并通过相应器件的制备与初步实验研究,将仿真结果和实验数据进行比较分析。结果表明,所设计的基于组合结构的双界面液体透镜仿真和实验的变焦范围基本一致,同时实验获得的变焦比可达
2.1254 、成像分辨率最大可达101.5937 lp/mm。本文设计的基于组合结构的双界面液体透镜具有结构简单紧凑、界面可调控性强、成像分辨率高的优点。Abstract:In order to improve the image quality and variable range of focal length of liquid lenses, a double-interface liquid lens based on a combination structure is designed utilizing dielectrophoretic and hydraulic drive mechanisms, which mainly consists of a dielectrophoretic double-liquid lens and a PDMS membrane liquid lens. First, the liquid lens model is established with Comsol software, the surface profile changes of droplets and PDMS membrane under different voltages are studied, and the surface profile data of two surfaces are derived. Second, the aspherical expression is used to fit with Matlab software, and the interface profiles of droplets and PDMS membrane under different voltages and the corresponding aspherical coefficient are obtained. Finally, the corresponding double-interface combined liquid lens optical model is built with Zemax software, and the image plane is selected as the Gaussian image plane. The simulation and experimental data are compared and analyzed through the corresponding device’s fabrication and the preliminary experimental research. The results show that the variable focal length range of the designed double-interface liquid lens based on the combined structure of the simulation is consistent with that of the experiment. Additionally, the results show that the zoom ratio and the imaging resolution can reach
2.1254 and101.5937 lp/mm, respectively. The double-interface liquid lens based on the combination structure has the advantages of a simple and compact structure, strong interface adjustability, and high resolution imaging.-
Key words:
- liquid lens /
- hydraulic drive /
- dielectrophoretic effect /
- double interfaces /
- PDMS membrane
-
表 1 不同电压下的液滴中心高度
Table 1. Heights of droplet center under different voltages
电压/V 高度/mm 0 1.703 40 1.711 80 1.736 120 1.777 160 1.835 200 1.888 表 2 双界面组合液体透镜光学模型的结构参数(200 V,0.05 mL)
Table 2. Structural parameters of the optical model of the double-interface combined liquid lens (200 V, 0.05 mL)
表面类型 曲率半径 厚度/ mm 材料 通光孔径/ mm b c d e f Object(标准面) 无限 无限 0 1(标准面) 无限 0.7 BK7 6.5 2(标准面) 无限 1.888 甲基硅油 1.6 STO(偶次非球面) 无限 2.112 去离子水 1.6 −0.195 −0.995 0.744 −0.234 0.025 4(标准面) 无限 0.7 BK7 6.5 5(标准面) 无限 10.760 去离子水 6.5 6 (偶次非球面) 无限 14.737 6.5 −0.018 −5.56×10−6 −6.28×10−9 9.19×10−11 −1.09×10−12 IMA(标准面) 无限 5.281 -
[1] 王琼华, 刘超, 王迪, 等. 液体光子器件[M]. 北京: 科学出版社, 2021.WANG Q H, LIU CH, WANG D, et al. Liquid Photonic Device[M]. Beijing: Science Press, 2021. (in Chinese). [2] 甘俊杰, 李磊. 可补偿像差的PDMS液体透镜[J]. 光电工程,2022,49(05):210404.GAN J J, LI L. PDMS liquid lens with corrected abberations[J]. Opto-Electronic Engineering, 2022, 49(05): 210404. (in Chinese). [3] CHENG C C, CHANG C A, YEH J A. Variable focus dielectric liquid droplet lens[J]. Optics Express, 2006, 14(9): 4101-4106. doi: 10.1364/OE.14.004101 [4] REN H W, WU S T. Tunable-focus liquid microlens array using dielectrophoretic effect[J]. Optics Express, 2008, 16(4): 2646-2652. doi: 10.1364/OE.16.002646 [5] XU M, WANG X H, REN H W. Tunable focus liquid lens with radial-patterned electrode[J]. Micromachines, 2015, 6(8): 1157-1165. doi: 10.3390/mi6081157 [6] JIN B Y, REN H W, CHOI W K. Dielectric liquid lens with chevron-patterned electrode[J]. Optics Express, 2017, 25(26): 32411-32419. doi: 10.1364/OE.25.032411 [7] CHEN Q M, LI T H, LI ZH H, et al. Dielectrophoresis-actuated liquid lenses with dual air/liquid interfaces tuned from biconcave to biconvex[J]. Lab on a Chip, 2018, 18(24): 3849-3854. doi: 10.1039/C8LC00999F [8] REN H W, WU S T. Variable-focus liquid lens[J]. Optics Express, 2007, 15(10): 5931-5936. doi: 10.1364/OE.15.005931 [9] YU H B, ZHOU G Y, LEUNG H M, et al. Tunable liquid-filled lens integrated with aspherical surface for spherical aberration compensation[J]. Optics Express, 2010, 18(10): 9945-9954. doi: 10.1364/OE.18.009945 [10] DU J W, WANG X Y, LIANG D. Bionic optical imaging system with aspheric solid–liquid mixed variable-focus lens[J]. Optical Engineering, 2016, 55(2): 023105. doi: 10.1117/1.OE.55.2.023105 [11] 陈帅. PDMS薄膜型可变焦液体透镜研究[D]. 杭州: 浙江大学, 2018.CHEN SH. Study on the variable focus liquid lens using PDMS membrane[D]. Hangzhou: Zhejiang University, 2018. (in Chinese). [12] ZHOU H, ZHANG X F, XU Z J, et al. Universal membrane-based tunable liquid lens design for dynamically correcting spherical aberration over user-defined focal length range[J]. Optics Express, 2019, 27(26): 37667-37679. doi: 10.1364/OE.27.037667 [13] 孔梅梅, 刘悦, 董媛, 等. 基于平面电极的非球面双液体透镜的设计与分析[J]. 物理学报,2023,72(15):154206. doi: 10.7498/aps.72.20230758KONG M M, LIU Y, DONG Y, et al. Design and analysis of aspherical double-liquid lens based on planar electrode[J]. Acta Physica Sinica, 2023, 72(15): 154206. (in Chinese). doi: 10.7498/aps.72.20230758 [14] REN H W, WU S T. Variable-focus liquid lens by changing aperture[J]. Applied Physics Letters, 2005, 86(21): 211107. doi: 10.1063/1.1935749 [15] KUWANO R, TOKUNAGA T, OTANI Y, et al. Liquid pressure varifocus lens[J]. Optical Review, 2005, 12(5): 405-408. doi: 10.1007/s10043-005-0405-3 [16] CU-NGUYEN P H, GREWE A, HILLENBRAND M, et al. Tunable hyperchromatic lens system for confocal hyperspectral sensing[J]. Optics Express, 2013, 21(23): 27611-27621. doi: 10.1364/OE.21.027611 [17] KUIPER S, HENDRIKS B H W. Variable-focus liquid lens for miniature cameras[J]. Applied Physica Letters, 2004, 85(7): 1128-1130. doi: 10.1063/1.1779954 [18] REN L CH, PARK S, REN H W, et al. Adaptive liquid lens by changing aperture[J]. Journal of Microelectromechanical Systems, 2012, 21(4): 953-958. doi: 10.1109/JMEMS.2012.2194777 [19] PATRA R, AGARWAL S, KONDARAJU S, et al. Membrane-less variable focus liquid lens with manual actuation[J]. Optics Communications, 2017, 389: 74-78. doi: 10.1016/j.optcom.2016.12.021 [20] 孔梅梅, 潘世成, 袁东, 等. 方腔结构非球面液体透镜的设计与分析[J]. 激光与光电子学进展,2023,60(21):2122005.KONG M M, PAN SH CH, YUAN D, et al. Design and analysis of aspheric liquid lens with square cavity structure[J]. Laser & Optoelectronics Progress, 2023, 60(21): 2122005. (in Chinese).