留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度降噪卷积神经网络的宽波段共相检测研究

李斌 刘银岭 杨阿坤 陈莫

李斌, 刘银岭, 杨阿坤, 陈莫. 基于深度降噪卷积神经网络的宽波段共相检测研究[J]. 中国光学(中英文), 2024, 17(6): 1329-1339. doi: 10.37188/CO.2024-0079
引用本文: 李斌, 刘银岭, 杨阿坤, 陈莫. 基于深度降噪卷积神经网络的宽波段共相检测研究[J]. 中国光学(中英文), 2024, 17(6): 1329-1339. doi: 10.37188/CO.2024-0079
LI Bin, LIU Yin-ling, YANG A-kun, CHEN Mo. Broad-band co-phase detection based on denoising convolutional neural network[J]. Chinese Optics, 2024, 17(6): 1329-1339. doi: 10.37188/CO.2024-0079
Citation: LI Bin, LIU Yin-ling, YANG A-kun, CHEN Mo. Broad-band co-phase detection based on denoising convolutional neural network[J]. Chinese Optics, 2024, 17(6): 1329-1339. doi: 10.37188/CO.2024-0079

基于深度降噪卷积神经网络的宽波段共相检测研究

cstr: 32171.14.CO.2024-0079
基金项目: 国家自然科学基金(No. 12103019);江西省自然科学青年基金(No. 20232BAB211023)
详细信息
    作者简介:

    李 斌(1989—),男,江西鹰潭人,博士,副教授,华东交通大学机电学院教师,2012 年于武汉大学获得学士学位,2017 年于中国科学院光电技术研究所获得博士学位,主要从事拼接镜共相检测和太赫兹光谱应用的研究。E-mail:libingioe@126.com

  • 中图分类号: O436

Broad-band co-phase detection based on denoising convolutional neural network

Funds: Supported by National Natural Science Foundation of China (No. 12103019); Natural Science Youth Foundation of Jiangxi Province (No. 20232BAB211023)
More Information
  • 摘要:

    拼接镜的共相误差检测是当前科学研究的热点问题之一,基于宽波段光源的共相检测技术解决了夏克哈特曼法由于目标流量低引起的测量时间长的问题,从而提升了piston误差的检测精度和量程。然而,当前宽波段算法在实际应用中,由于复杂的环境以及相机扰动等干扰因素的存在导致获取的圆形孔径衍射图像含有一定量的噪声,从而导致相关系数值低于设定阈值,最终使该方法精度降低,甚至失效。针对这一问题,本文提出将基于深度降噪卷积神经网络(DnCNN)的算法集成到宽波段算法中,以实现对噪声干扰的控制,并保留远场图像的相位信息。首先,将使用MATLAB获得的圆孔衍射图像作为DnCNN的训练数据,然后,将不同噪声水平的图像导入到训练好的降噪模型中,即可得到降噪后的图像以及降噪前、后圆孔衍射图像的峰值信噪比和二者与清晰无噪声图像间的结构相似度。结果表明:降噪处理后的图像与理想清晰图像之间的平均结构相似度较处理之前有了明显提升,获得了理想的降噪效果,有效增强了宽波段算法在高噪声条件下的应对能力。该研究对于探索用于实际共相检测环境宽波段光源算法具有较强的理论意义和应用价值。

     

  • 图 1  子镜间的圆孔衍射示意图

    Figure 1.  Schematic diagram of circular aperture diffraction between submirrors

    图 2  掩膜半径为r的理论圆孔衍射图

    Figure 2.  Theoretical diffractogram of circular aperture with mask radius r

    图 3  Corr2随piston误差变化关系图

    Figure 3.  Relationship between Corr2 and piston error

    图 4  20 dB加性高斯白噪声影响下的Corr2图像

    Figure 4.  Corr2 image under the influence of 20 dB additive white Gaussian noise

    图 5  含噪声的共相误差检测流程图

    Figure 5.  Detection flowchart of co-phase error with noise

    图 6  DnCNN的网络结构

    Figure 6.  The network structure of the DnCNN

    图 7  DnCNN训练时损失函数和学习率的变化过程

    Figure 7.  The change process of the loss function and learning rate during DnCNN training

    图 8  当4组子镜的piston分别为−0.2 μm、0、0.2 μm、2 μm时,不同方法的降噪效果图。(a)清晰图像;(b)噪声图像;(c)使用BM3D网络降噪后的图像;(d)使用WNNM网络降噪后的图像;(e)使用DnCNN降噪后的图像

    Figure 8.  Plots of the noise reduction effect of different methods for Gaussian noise for four sets of submirror piston errors of −0.2, 0, 0.2, and 2 μm. (a) Clear images; (b) noisy images; (c) images after noise reduction by BM3D network; (d) images after noise reduction by WNNM network; (e) images after noise reduction by DnCNN

    图 9  DnCNN高斯噪声降噪效果图

    Figure 9.  Effect of DnCNN Gaussian noise reduction

    图 10  对于piston分别为−0.2 μm、0、0.2 μm、2 μm的4组子镜,不同方法对于泊松噪声的降噪效果图。(a)清晰图像;(b)噪声图像;(c)使用BM3D网络降噪后的图像;(d)使用DnCNN网络降噪后的图像

    Figure 10.  The denoising effect of different methods on Poisson noise for four sets of submirror piston errors of −0.2 μm, 0, 0.2 μm, and 2 μm (from left to right). (a) Clear images; (b) noisy images; (c) images denoised by BM3D network; (d) images denoised by DnCNN

    图 11  DnCNN泊松噪声降噪效果图

    Figure 11.  Effect of DnCNN Poisson noise reduction

    图 12  共相误差检测系统

    Figure 12.  Co-phase error detection system

    图 13  (a)不含piston误差及(b)含piston误差的相机直采衍射图像

    Figure 13.  Camera direct images (a) without piston error (b) with piston error

    图 14  图像增强后的降噪效果对比。(a)(c)原始含噪声图像;(b)(d)降噪后图像

    Figure 14.  Comparison of denoise effect after image enhancement. (a) (b) Original noise-containing images; (c) (d) images after denoising

    表  1  4组具有不同piston误差的含有高斯噪声的图像降噪前、后与清晰无噪声图像之间的SSIM值

    Table  1.   SSIM values between images containing Gaussian noise with four sets of submirror piston errors before and after noise reduction and clear noise-free images

    piston SSIM值
    BM3D WNNM DnCNN
    −0.2 μm 0.3527 0.2049 0.9747
    0 0.2680 0.1376 0.9811
    0.2 μm 0.3639 0.2109 0.9762
    2 μm 0.3959 0.2294 0.9810
    SSIM均值 0.3451 0.1957 0.9783
    下载: 导出CSV

    表  2  4组子镜piston误差下,PSNR在40 ~20 dB范围内的降噪前、降噪后图像与清晰无噪声图像之间的SSIM值

    Table  2.   SSIM values between pre- and post-noise reduction images with four sets of submirror piston errors and clear noise-free images when PSNR in the range of 40 dB to 20 dB

    piston=-0.2 μm piston=0 piston=0.2 μm piston=2 μm
    PSNR before after before after before after before after
    20 0.2875 0.9747 0.2610 0.9811 0.2892 0.9762 0.2954 0.9810
    24 0.4794 0.9766 0.4669 0.9954 0.4858 0.9785 0.4942 0.9811
    28 0.6992 0.9753 0.6798 0.9962 0.7001 0.9769 0.6981 0.9824
    32 0.8536 0.9739 0.8387 0.9962 0.8537 0.9738 0.8519 0.9785
    36 0.9349 0.9735 0.9321 0.9965 0.9354 0.9739 0.9366 0.9761
    40 0.9731 0.9726 0.9714 0.9966 0.9726 0.9728 0.9735 0.9750
    AVG 0.7046 0.9744 0.6917 0.9937 0.7061 0.9754 0.7083 0.9790
    下载: 导出CSV

    表  3  4组子镜piston误差下的含有泊松噪声的图像在降噪前、后与清晰无噪声图像之间的SSIM值

    Table  3.   SSIM values between images containing Poisson noise with four sets of submirror piston errors before and after noise reduction and clear noise-free image

    piston=−0.2 μm piston=0 piston=0.2 μm piston=2 μm 平均值
    BM3D 0.9114 0.8966 0.9334 0.9046 0.9115
    DnCNN 0.9998 0.9998 0.9997 0.9998 0.9998
    下载: 导出CSV

    表  4  4组子镜piston误差下,PSNR在30 dB至10 dB范围内的降噪前、降噪后图像与清晰无噪声图像之间的SSIM值

    Table  4.   SSIM values of pre- and post-noise reduction images and clear noise-free images with PSNR in the range of 30 dB to 10 dB for four sets of submirror piston errors

    piston=-0.2 μm piston=0 piston=0.2 μm piston=2 μm
    PSNR before after before after before after before after
    10 0.0726 0.9973 0.0579 0.9970 0.0761 0.9973 0.0838 0.9973
    14 0.2046 0.9995 0.2032 0.9996 0.1985 0.9995 0.3131 0.9996
    18 0.5811 0.9995 0.5337 0.9993 0.5453 0.9995 0.6148 0.9981
    22 0.7555 0.9997 0.8255 0.9998 0.7599 0.9995 0.7926 0.9997
    26 0.8767 0.9999 0.9125 0.9999 0.9406 0.9998 0.9617 0.9999
    30 0.9543 0.9998 0.9781 0.9998 0.9496 0.9999 0.9307 0.9997
    AVG 0.5741 0.9993 0.5852 0.9992 0.5783 0.9993 0.6161 0.9991
    下载: 导出CSV
  • [1] 霍银龙, 杨飞, 王富国. 大口径光学望远镜拼接镜面关键技术综述[J]. 中国光学(中英文),2022,15(5):973-982. doi: 10.37188/CO.2022-0109

    HUO Y L, YANG F, WANG F G. Overview of key technologies for segmented mirrors of large-aperture optical telescopes[J]. Chinese Optics, 2022, 15(5): 973-982. (in Chinese). doi: 10.37188/CO.2022-0109
    [2] 马舒凡, 鲜浩, 王胜千. 合成孔径系统平移误差的四棱锥传感器检测方法[J]. 激光与光电子学进展,2023,60(15):1528001.

    MA SH F, XIAN H, WANG SH Q. Detection of piston error of synthetic aperture system using pyramid sensor[J]. Laser & Optoelectronics Progress, 2023, 60(15): 1528001. (in Chinese).
    [3] HUANG L SH, WANG J L, CHEN L, et al. Visible pyramid wavefront sensing approach for daylight adaptive optics[J]. Optics Express, 2022, 30(7): 10833-10849. doi: 10.1364/OE.449021
    [4] LI B, YANG A K, LI Y B, et al. Research on co-phasing detection of segmented mirror based on convolutioned neural networks[J]. Optics & Laser Technology, 2023, 167: 109737.
    [5] 李斌, 杨阿坤, 邹吉平. 基于宽波段光源拼接镜新型共相检测技术研究[J]. 中国光学,2022,15(4):797-805. doi: 10.37188/CO.2021-0234

    LI B, YANG A K, ZOU J P. A new co-phasing detection technology of a segmented mirror based on broadband light[J]. Chinese Optics, 2022, 15(4): 797-805. (in Chinese). doi: 10.37188/CO.2021-0234
    [6] SHEELA C J J, SUGANTHI G. An efficient denoising of impulse noise from MRI using adaptive switching modified decision based unsymmetric trimmed median filter[J]. Biomedical Signal Processing and Control, 2020, 55: 101657. doi: 10.1016/j.bspc.2019.101657
    [7] DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007, 16(8): 2080-2095. doi: 10.1109/TIP.2007.901238
    [8] GU SH H, ZHANG L, ZUO W M, et al. Weighted nuclear norm minimization with application to image denoising[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2014: 2862-2869.
    [9] 李维勤, 白清, 昝伟, 等. 脉冲编码融合DnCNN提升BOTDA信噪比研究[J/OL]. 中国激光, 1-15[2024-04-24]. http://kns.cnki.net/kcms/detail/31.1339.TN.20240220.1406.092.html.

    LI W Q, BAI Q, ZAN W, et al. SNR enhancement for BOTDA by DnCNN and pulse coding[J/OL]. Chinese Journal of Lasers, 1-15[2024-04-24]. http://kns.cnki.net/kcms/detail/31.1339.TN.20240220.1406.092.html. (in Chinese).
    [10] SCHMIDT U, ROTH S. Shrinkage fields for effective image restoration[C]. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2014: 2774-2781.
    [11] CHEN Y J, POCK T. Trainable nonlinear reaction diffusion: a flexible framework for fast and effective image restoration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1256-1272. doi: 10.1109/TPAMI.2016.2596743
    [12] ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a Gaussian Denoiser: residual learning of deep CNN for Image denoising[J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142-3155. doi: 10.1109/TIP.2017.2662206
    [13] 李斌, 杨阿坤, 孙赵祥, 等. 基于深度学习的拼接镜共相检测新方法研究[J]. 中国激光,2023,50(22):2204001. doi: 10.3788/CJL221357

    LI B, YANG A K, SUN ZH X, et al. Research on new co-phasing detection method of segmented mirror based on deep learning[J]. Chinese Journal of Lasers, 2023, 50(22): 2204001. (in Chinese). doi: 10.3788/CJL221357
    [14] GONZALEZ R R C, WOODS R E. Digital Image Processing[M]. 3rd ed. Noida, India: Pearson education india, 2009.
    [15] 敬天成, 段红光, 赵旭, 等. 电力线载波通信中基于深度学习的信道估计[J]. 光通信研究,2024(2):220058.

    JING T CH, DUAN H G, ZHAO X, et al. Deep learning based channel estimation in PLC communication[J]. Study on Optical Communications, 2024(2): 220058. (in Chinese).
    [16] 栗苹, 周宇, 曹荣刚, 等. 基于深度学习和双域融合的红外成像制导系统复杂背景噪声去除方法[J]. 兵工学报,2024,45(6):1747-1760. doi: 10.12382/bgxb.2023.0307

    LI P, ZHOU Y, CAO R G, et al. A denoising method for complex background noise of infrared imaging guidance system based on deep learning and dual-domain fusion[J]. Acta Armamentarii, 2024, 45(6): 1747-1760. (in Chinese). doi: 10.12382/bgxb.2023.0307
    [17] 颜戚冰, 周先春, 昝明远, 等. 基于残差连接的并行网络去噪[J]. 计算机与数字工程,2023,51(9):2103-2108. doi: 10.3969/j.issn.1672-9722.2023.09.030

    YAN Q B, ZHOU X CH, ZAN M Y, et al. Parallel network denoising method based on residual connection[J]. Computer & Digital Engineering, 2023, 51(9): 2103-2108. (in Chinese). doi: 10.3969/j.issn.1672-9722.2023.09.030
    [18] LI D Q, XU SH Y, WANG D, et al. Phase diversity algorithm with high noise robust based on deep denoising convolutional neural network[J]. Optics Express, 2019, 27(16): 22846-22854. doi: 10.1364/OE.27.022846
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  77
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-28
  • 修回日期:  2024-05-22
  • 录用日期:  2024-07-12
  • 网络出版日期:  2024-08-21

目录

    /

    返回文章
    返回