留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CGH零位补偿的同轴高次非球面干涉检测技术研究

王慎 刘泉 国成立 闫力松

王慎, 刘泉, 国成立, 闫力松. 基于CGH零位补偿的同轴高次非球面干涉检测技术研究[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0152
引用本文: 王慎, 刘泉, 国成立, 闫力松. 基于CGH零位补偿的同轴高次非球面干涉检测技术研究[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0152
WANG Shen, LIU Quan, GUO Cheng-li, YAN Lisong. Research on CGH null compensation testing of high-order coaxial aspherical surface[J]. Chinese Optics. doi: 10.37188/CO.2024-0152
Citation: WANG Shen, LIU Quan, GUO Cheng-li, YAN Lisong. Research on CGH null compensation testing of high-order coaxial aspherical surface[J]. Chinese Optics. doi: 10.37188/CO.2024-0152

基于CGH零位补偿的同轴高次非球面干涉检测技术研究

cstr: 32171.14.CO.2024-0152
基金项目: 重点研发计划(No. 2022YFC2203904);武汉市知识创新专项项目(基于时频空编码自由曲面高精度面形检测技术研究),宁波市重点研发计划(No. 2024T007)
详细信息
    作者简介:

    王 慎(1988—),女,黑龙江大庆人,美国密歇根大学硕士,主要研究方向为检测技术研究。E-mail:20190009@ruc.edu.cn

    刘 泉(1990—),男,江西九江人,博士,高级工程师,主要研究方向为干涉补偿检测。E-mail:gx_liuq@sunnyoptical.com

    国成立(1990—),男,吉林长春人,博士,高级工程师,主要从事成像及目视光学系统的加工、制造及检测等方面的工作。E-mail:gcl@sunnyoptical.com

    闫力松(1988—),男,黑龙江齐齐哈尔人,副教授,博士生导师,主要研究方向为干涉检测技术及其应用。E-mail:yanlisong@hust.edu.cn

  • 中图分类号: O439;O436.1

Research on CGH null compensation testing of high-order coaxial aspherical surface

Funds: Supported by the National Key Research and Development Program of China (No. 2022YFC2203904); Wuhan Knowledge Innovation Special Project (Research on high-precision surface shape detection technology based on time-frequency and space-bound freeform surfaces); Key Research and Development Program of Ningbo (No. 2024T007)
More Information
  • 摘要:

    为了解决同轴高次非球面的高精度面形检测问题,本文建立了一种基于CGH的同轴高次非球面零位补偿检测设计方法。基于上述方法,可以有效的实现同轴非球面补偿设计中的各衍射级次分离,实现对于待测镜面的零位补偿设计。结合工程实例,本文对一口径260 mm的同轴高次非球面反射镜实现了零位补偿检测设计,从CGH设计结果可以看出,基于本文所述检测设计方法,其理论设计检测残差可以达到0 nm RMS值。同时对于该同轴高次非球面反射镜,文章也完成了实际检测。为了进一步的对检测结果进行分析,针对检测过程中的误差源进行了的误差分析,从而验证本方法的可靠性与精度。

     

  • 图 1  CGH补偿凹面镜示意图

    Figure 1.  Schematic diagram of a compensating concave mirror

    图 2  光路参数示意图

    Figure 2.  Schematic diagram of optical path parameters

    图 3  CGH区域分布示意图

    Figure 3.  Schematic diagram of the regional distribution of CGH

    图 4  主区域拟合残差

    Figure 4.  Fitting residuals for the main region

    图 5  CGH主区域条纹图

    Figure 5.  Stripe diagram of the main region

    图 6  CGH辅助对准区域条纹设计图

    Figure 6.  CGH assisted alignment area stripe design

    图 7  衍射级次分离光路图

    Figure 7.  Optical path diagram of diffraction order separation

    图 8  衍射级次分离示意图

    Figure 8.  Schematic diagram of diffraction order separation

    图 9  主镜CGH补偿检测光路图

    Figure 9.  Optical path diagram of primary mirror CGH compensation testing

    图 10  同轴高次非球面主镜面形检测结果

    Figure 10.  Surface map of the coaxial high-order aspherical primary mirror

    图 11  CGH基板透射波像差结果

    Figure 11.  Transmitted wave aberration results on CGH substrates

    表  1  待测高次非球面镜面基本参数

    Table  1.   The basic parameters of the high-order aspherical mirror

    参数项 参数数值
    D 260 mm
    r −4.62E+002
    k 1.192E-001
    A4 2.936-011
    A6 2.875-015
    下载: 导出CSV

    表  2  检测光路基本参数

    Table  2.   The basic parameters of the detection optical path

    CGH基板 直径100 mm; 厚度15.07 mm;
    距离L1= 93.76; L2= 496 mm
    干涉仪焦点坐标 F(0, −4),单位mm
    光阑参数 距离CGH后表面76.5 mm;直径1 mm
    辅助对准区域(蓝色) 辅助CGH和干涉仪之间对准;辅助CGH和
    平面镜直接对准;衍射级次5级
    基准投射区域(紫色) 在被检面处投射参考光斑;衍射级次1级
    所投射4个光斑坐标 J(0, 132.14), Q(132.14, 0), K(0, -132.14),
    A(−132.14, 0), 单位mm
    下载: 导出CSV

    表  3  主区域光学设计结果

    Table  3.   Main area optical design results

    区域范围 圆形,半径25.07 mm
    检测范围 260 mm
    条纹密度估算 平均76 lp/mm,最密117.5 lp/mm
    干涉仪焦点坐标 F(0, −4),单位mm
    Zernike拟合残差 rms0.0000λ@632.8 nm
    下载: 导出CSV

    表  4  主镜CGH误差源

    Table  4.   Primary mirror CGH error sources

    误差项 rms/λ 备注
    设计误差 0.00000
    编码误差 0.00010
    基板误差 0.0027 假定补偿其Z9及以下低阶项
    刻画误差 0.0023 按位置误差σx=σy=30 nm;
    位置失调误差 0 检测时调整彗差到0;
    误差合成 0.00355 以RSS方式合成上述各项;
    下载: 导出CSV
  • [1] ZHOU P, BURGE J H. Fabrication error analysis and experimental demonstration for computer-generated holograms[J]. Applied Optics, 2007, 46(5): 657-663. doi: 10.1364/AO.46.000657
    [2] LI SH J, ZHANG J, LIU W G, et al. Measurement investigation of an off-axis aspheric surface via a hybrid compensation method[J]. Applied Optics, 2018, 57(28): 8220-8227. doi: 10.1364/AO.57.008220
    [3] LIANG Z J, ZHAO H Y, YANG Y Y. Solving optimal carrier frequencies of a CGH null compensator through a double-constrained searching method based on iterative ray-tracings[J]. Applied Optics, 2022, 61(16): 4699-4709. doi: 10.1364/AO.455315
    [4] SHEN H, ZHU R H, GAO ZH SH, et al. Design and fabrication of computer-generated holograms for testing optical freeform surfaces[J]. Chinese Optics Letters, 2013, 11(3): 032201. doi: 10.3788/COL201311.032201
    [5] YANG H S, SONG J B, LEE I W, et al. Testing of steep convex aspheric surface with a Hartmann sensor by using a CGH[J]. Optics Express, 2006, 14(8): 3247-3254. doi: 10.1364/OE.14.003247
    [6] LIU H, LU ZH W, LI F Y, et al. Design of a novel hologram for full measurement of large and deep convex aspheric surfaces[J]. Optics Express, 2007, 15(6): 3120-3126. doi: 10.1364/OE.15.003120
    [7] PETERHÄNSEL S, PRUSS C, OSTEN W. Phase errors in high line density CGH used for aspheric testing: beyond scalar approximation[J]. Optics Express, 2013, 21(10): 11638-11651. doi: 10.1364/OE.21.011638
    [8] CUI J P, ZHANG N, LIU J, et al. Testing the mid-spatial frequency error of a large aperture long-focal-length lens with CGH[J]. Optics Express, 2020, 28(7): 9454-9463. doi: 10.1364/OE.388625
    [9] LI M ZH, HU H X, ZHANG X J, et al. Modeling and suppressing the wavefront degeneration in a CGH interferometric null test[J]. Optics Express, 2022, 30(23): 41508-41523. doi: 10.1364/OE.470808
    [10] 徐秋云, 孔令臣. 大口径非球面反射镜零位补偿器误差标定方法[J]. 激光与光电子学进展,2024,61(4):0422001.

    XU Q Y, KONG L CH. Error calibration method of null correctors for large-aperture aspherical mirrors[J]. Laser & Optoelectronics Progress, 2024, 61(4): 0422001. (in Chinese).
    [11] 梁子健, 杨甬英, 赵宏洋, 等. 非球面光学元件面型检测技术研究进展与最新应用[J]. 中国光学,2022,15(2):161-186. doi: 10.37188/CO.2021-0143

    LIANG Z J, YANG Y Y, ZHAO H Y, et al. Advances in research and applications of optical aspheric surface metrology[J]. Chinese Optics, 2022, 15(2): 161-186. (in Chinese). doi: 10.37188/CO.2021-0143
    [12] 胡晨, 魏朝阳, 万嵩林, 等. 基于计算全息图的大口径长焦距离轴抛物面反射镜测量[J]. 中国激光,2024,51(11):1101030.

    HU CH, WEI CH Y, WAN S L, et al. Measurement of large aperture long focus off-axis paraboloid mirror based on computer generated hologram[J]. Chinese Journal of Lasers, 2024, 51(11): 1101030. (in Chinese).
    [13] 张誉馨, 黎发志, 闫力松, 等. 结合CGH与辅助透镜的长焦距非球面反射镜检测(特邀)[J]. 红外与激光工程,2022,51(9):20220384. doi: 10.3788/IRLA20220384

    ZHANG Y X, LI F ZH, YAN L S, et al. Long focal length aspherical mirror testing with CGH and auxiliary lenses (invited)[J]. Infrared and Laser Engineering, 2022, 51(9): 20220384. (in Chinese). doi: 10.3788/IRLA20220384
    [14] 王兆明, 栗孟娟, 于秋跃, 等. 两面共体非球面反射镜光轴一致性高精度测量方法研究(特邀)[J]. 红外与激光工程,2023,52(9):20230476. doi: 10.3788/IRLA20230476

    WANG ZH M, LI M J, YU Q Y, et al. Research on high precision testing method for mirror optical axis of two-sided community aspheric mirror (invited)[J]. Infrared and Laser Engineering, 2023, 52(9): 20230476. (in Chinese). doi: 10.3788/IRLA20230476
    [15] 刘佳妮, 陈安和, 李智勇, 等. 小口径深度凸非球面的高精度面形检测[J]. 红外与激光工程,2022,51(9):20220190. doi: 10.3788/IRLA20220190

    LIU J N, CHEN A H, LI ZH Y, et al. High-precision shape measurement technology for convex aspheric with small aperture and large convex asphericity[J]. Infrared and Laser Engineering, 2022, 51(9): 20220190. (in Chinese). doi: 10.3788/IRLA20220190
    [16] 苏航, 王孝坤, 程强, 等. 子孔径拼接和计算全息混合补偿检测大口径凸非球面(特邀)[J]. 红外与激光工程,2022,51(9):20220576. doi: 10.3788/IRLA20220576

    SU H, WANG X K, CHENG Q, et al. Sub-aperture stiching and CGH mixed compensation for the testing of large convex asphere (invited)[J]. Infrared and Laser Engineering, 2022, 51(9): 20220576. (in Chinese). doi: 10.3788/IRLA20220576
    [17] LINDLEIN N. Analysis of the disturbing diffraction orders of computer-generated holograms used for testing optical aspherics[J]. Applied Optics, 2001, 40(16): 2698-2708. doi: 10.1364/AO.40.002698
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  21
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-23
  • 录用日期:  2024-11-25
  • 网络出版日期:  2024-12-05

目录

    /

    返回文章
    返回