-
摘要:
量子噪声是影响激光干涉引力波探测能力的主要噪声之一。为应对量子噪声,进一步提高探测灵敏度,本文应用量子传递函数方法对传统迈克尔逊干涉仪的量子噪声源头进行了重新推导。结果表明,对于辐射压噪声和散粒噪声这两类量子噪声,前者可直接归因于干涉仪暗口处真空涨落的正交振幅涨落,后者则仅在一定条件下可完全归因于暗口处的正交相位涨落。在明确量子噪声的源头归属前提下,压缩光技术可提高探测器的灵敏度,但当采取不等臂干涉探测方案时,必须注意两不等臂臂长之间的长度差异。
Abstract:Quantum noise is one of the main noises affecting the laser interferometric gravitational wave detection. To cope with quantum noise and further improve detection sensitivity, this paper applies the quantum transfer function method to rederive the source attribution of quantum noise in conventional Michelson interferometers. The findings reveal that for two types of quantum noise-radiation pressure noise and shot noise-radiation pressure noise can be directly attributed to the amplitude quadrature fluctuations of vacuum fluctuations at the unused port of the interferometer, while shot noise can be completely attributed to the phase quadrature fluctuations at the unused port only under certain conditions. Provided that the source attribution of the quantum noise is clearly known, the squeezed light technique can improve the sensitivity of detectors. However, when adopting unequal arm interference detection schemes, attention must be paid to the length difference between the two unequal arm lengths.
-
Key words:
- gravitational wave detection /
- quantum noise /
- vacuum fluctuation /
- squeezed light
-
[1] COLPI M, DANZMANN K, HEWITSON M, et al. LISA definition study report[EB/OL]. arXiv: 2402.07571, 2024[2024-11-22]. https://arxiv.org/abs/2402.07571. [2] HU W R, WU Y L. The Taiji Program in Space for gravitational wave physics and the nature of gravity[J]. National Science Review, 2017, 4(5): 685-686. [3] SAULSON P R. Fundamentals of Interferometric Gravitational Wave Detectors[M]. 2nd ed. Hackensack: World Scientific, 2017. [4] CAVES C M. Quantum-mechanical noise in an interferometer[J]. Physical Review D, 1981, 23(8): 1693-1708. doi: 10.1103/PhysRevD.23.1693 [5] MCKENZIE K, GROSSE N, BOWEN W P, et al. Squeezing in the audio gravitational-wave detection band[J]. Physical Review Letters, 2004, 93(16): 161105. doi: 10.1103/PhysRevLett.93.161105 [6] VAHLBRUCH H, CHELKOWSKI S, HAGE B, et al. Coherent control of vacuum squeezing in the gravitational-wave detection band[J]. Physical Review Letters, 2006, 97(1): 011101. doi: 10.1103/PhysRevLett.97.011101 [7] The LIGO Scientific Collaboration. A gravitational wave observatory operating beyond the quantum shot-noise limit[J]. Nature Physics, 2011, 7(12): 962-965. doi: 10.1038/nphys2083 [8] TSE M, YU H C, KIJBUNCHOO N, et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy[J]. Physical Review Letters, 2019, 123(23): 231107. doi: 10.1103/PhysRevLett.123.231107 [9] ACERNESE F, AGATHOS M, AIELLO L, et al. Increasing the astrophysical reach of the advanced Virgo detector via the application of squeezed vacuum states of light[J]. Physical Review Letters, 2019, 123(23): 231108. doi: 10.1103/PhysRevLett.123.231108 [10] GANAPATHY D, JIA W, NAKANO M, et al. Broadband quantum enhancement of the LIGO detectors with frequency-dependent squeezing[J]. Physical Review X, 2023, 13(4): 041021. doi: 10.1103/PhysRevX.13.041021 [11] ACERNESE F, AGATHOS M, AIN A, et al. Frequency-dependent squeezed vacuum source for the advanced Virgo gravitational-wave detector[J]. Physical Review Letters, 2023, 131(4): 041403. doi: 10.1103/PhysRevLett.131.041403 [12] BACHOR H A, RALPH T C. A Guide to Experiments in Quantum Optics[M]. 3rd ed. Weinheim: Wiley-VCH, 2019. [13] 罗子人, 白姗, 边星, 等. 空间激光干涉引力波探测[J]. 力学进展,2013,43(4):415-447. doi: 10.6052/1000-0992-13-044LUO Z R, BAI S, BIAN X, et al. Space laser interferometry gravitational wave detection[J]. Advances in Mechanics, 2013, 43(4): 415-447. (in Chinese). doi: 10.6052/1000-0992-13-044 [14] GERRY C C, KNIGHT P L. Introductory Quantum Optics[M]. 2nd ed. Cambridge: Cambridge University Press, 2005. [15] GRYNBERG G, ASPECT A, FABRE C. Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light[M]. Cambridge: Cambridge University Press, 2010. [16] ACERNESE F, AGATHOS M, AIELLO L, et al. Quantum backaction on kg-scale mirrors: observation of radiation pressure noise in the advanced Virgo detector[J]. Physical Review Letters, 2020, 125(13): 131101. doi: 10.1103/PhysRevLett.125.131101 -