-
摘要:
量子噪声是影响激光干涉引力波探测的主要噪声之一。为应对量子噪声,进一步提高探测灵敏度,本文应用量子传递函数方法对传统迈克尔逊干涉仪的量子噪声源头归咎进行了重新推导,结果表明,对于辐射压噪声和散粒噪声这两类量子噪声,辐射压噪声可直接归咎于干涉仪暗口处真空涨落的正交振幅涨落,散粒噪声仅在一定条件下可完全归咎于暗口处的正交相位涨落。在明确量子噪声的源头归咎前提下,压缩光技术可提高探测器的灵敏度,但当采取不等臂干涉探测方案时,必须注意两不等臂臂长之间的长度差异关系。最后,本文也提及了如若在空间引力波探测中推广应用压缩光技术时可能需要注意的问题,包括弱光锁相放大技术的影响、不同干涉仪间的联系、数据后处理的影响以及压缩光的产生。
Abstract:Quantum noise is one of the main noises that affect laser interference gravitational wave detection. To cope with quantum noise and further improve detection sensitivity, this paper applies the quantum transfer function method to rederive the source attribution of quantum noise in traditional Michelson interferometers. The results show that for two types of quantum noise, radiation pressure noise and shot noise, radiation pressure noise can be directly attributed to the amplitude quadrature fluctuations of vacuum fluctuations at the unused port of the interferometer, while shot noise can only be completely attributed to the phase quadrature fluctuations at the unused port under certain conditions. Under the premise of clearly knowing the source attribution of quantum noise, squeezed light technology can improve the sensitivity of detectors. However, when adopting unequal arm interference detection schemes, attention must be paid to the length difference between the two unequal arm lengths. Finally, this article also mentions the issues that may need to be considered when promoting the application of squeezed light technology in space gravitational wave detection, including the impact of weak light lock-in amplification technology, the relationship between different interferometers, the impact of data post-processing, and the generation of squeezed light.
-
Key words:
- gravitational wave detection /
- quantum noise /
- vacuum fluctuation /
- squeezed light
-
[1] COLPI M, DANZMANN K, HEWITSON M, et al. LISA definition study report[J]. arXiv: 2402.07571, 2024. (查阅网上资料, 未能确认文献类型, 请确认) . [2] HU W R, WU Y L. The Taiji Program in Space for gravitational wave physics and the nature of gravity[J]. National Science Review, 2017, 4(5): 685686. [3] SAULSON P R. Fundamentals of Interferometric Gravitational Wave Detectors[M]. 2nd ed. Hackensack: World Scientific, 2017. [4] CAVES C M. Quantum-mechanical noise in an interferometer[J]. Physical Review D, 1981, 23(8): 1693-1708. doi: 10.1103/PhysRevD.23.1693 [5] MCKENZIE K, GROSSE N, BOWEN W P, et al. Squeezing in the audio gravitational-wave detection band[J]. Physical Review Letters, 2004, 93(16): 161105. doi: 10.1103/PhysRevLett.93.161105 [6] VAHLBRUCH H, CHELKOWSKI S, HAGE B, et al. Coherent control of vacuum squeezing in the gravitational-wave detection band[J]. Physical Review Letters, 2006, 97(1): 011101. doi: 10.1103/PhysRevLett.97.011101 [7] The LIGO Scientific Collaboration. A gravitational wave observatory operating beyond the quantum shot-noise limit[J]. Nature Physics, 2011, 7(12): 962-965. doi: 10.1038/nphys2083 [8] TSE M, YU H C, KIJBUNCHOO N, et al. Quantumenhanced advanced LIGO detectors in the era of gravitationalwave astronomy[J]. Physical Review Letters, 2019, 123(23): 231107. doi: 10.1103/PhysRevLett.123.231107 [9] ACERNESE F, AGATHOS M, AIELLO L, et al. Increasing the astrophysical reach of the advanced Virgo detector via the application of squeezed vacuum states of light[J]. Physical Review Letters, 2019, 123(23): 231108. doi: 10.1103/PhysRevLett.123.231108 [10] GANAPATHY D, JIA W, NAKANO M, et al. Broadband quantum enhancement of the LIGO detectors with frequencydependent squeezing[J]. Physical Review X, 2023, 13(4): 041021. doi: 10.1103/PhysRevX.13.041021 [11] ACERNESE F, AGATHOS M, AIN A, et al. Frequencydependent squeezed vacuum source for the advanced virgo gravitationalwave detector[J]. Physical Review Letters, 2023, 131(4): 041403. doi: 10.1103/PhysRevLett.131.041403 [12] BACHOR H A, RALPH T C. A Guide to Experiments in Quantum Optics[M]. 3rd ed. Weinheim: Wiley-VCH, 2019. [13] 罗子人, 白姗, 边星, 等. 空间激光干涉引力波探测[J]. 力学进展,2013,43(4):415-447. doi: 10.6052/1000-0992-13-044LUO Z R, BAI SH, BIAN X, et al. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 2013, 43(4): 415-447. (in Chinese). doi: 10.6052/1000-0992-13-044 [14] GERRY C C, KNIGHT P L. Introductory Quantum Optics[M]. 2nd ed. Cambridge: Cambridge University Press, 2005. [15] GRYNBERG G, ASPECT A, FABRE C. Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light[M]. Cambridge: Cambridge University Press, 2010. [16] ACERNESE F, AGATHOS M, AIELLO L, et al. Quantum backaction on kg-scale mirrors: observation of radiation pressure noise in the advanced Virgo detector[J]. Physical Review Letters, 2020, 125(13): 131101. doi: 10.1103/PhysRevLett.125.131101 -