留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

引力波探测中激光干涉量子噪声计算

曾晓强 李磐 董鹏 杨然

曾晓强, 李磐, 董鹏, 杨然. 引力波探测中激光干涉量子噪声计算[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0180
引用本文: 曾晓强, 李磐, 董鹏, 杨然. 引力波探测中激光干涉量子噪声计算[J]. 中国光学(中英文). doi: 10.37188/CO.2024-0180
ZENG Xiao-qiang, LI Pan, DONG Peng, YANG Ran. Calculation of laser interference quantum noise in gravitational wave detection[J]. Chinese Optics. doi: 10.37188/CO.2024-0180
Citation: ZENG Xiao-qiang, LI Pan, DONG Peng, YANG Ran. Calculation of laser interference quantum noise in gravitational wave detection[J]. Chinese Optics. doi: 10.37188/CO.2024-0180

引力波探测中激光干涉量子噪声计算

cstr: 32171.14.CO.2024-0180
基金项目: 国家重点研发计划资助(No. 2020YFC2200901);国科大杭州高等研究院专项资金(No. 2022ZZ01006)
详细信息
    作者简介:

    曾晓强(2001—),男,河南信阳人,在读研究生,主要研究方向为引力波探测中干涉仪量子噪声。E-mail:zengxiaoqiang22@mails.ucas.ac.cn

    董 鹏(1987—),男,北京市人,博士,高级工程师,硕士生导师,2011年于中国科学院紫金山天文台获得博士学位,主要从事空间激光干涉测量技术的研究。E-mail:dongpeng@ucas.ac.cn

    杨 然(1981—),女,博士,副研究员,2011年于华中科技大学获博士学位,主要从事量子精密测量及干涉仪系统噪声模型仿真和分析。E-mail:yangran@imech.ac.cn

  • 中图分类号: O431.2

Calculation of laser interference quantum noise in gravitational wave detection

Funds: Supported by the National Key Research and Development Program (No. 2020YFC2200901); the Research Funds of Hangzhou Institute for Advanced Study, UCAS (No. 2022ZZ01006)
More Information
  • 摘要:

    量子噪声是影响激光干涉引力波探测的主要噪声之一。为应对量子噪声,进一步提高探测灵敏度,本文应用量子传递函数方法对传统迈克尔逊干涉仪的量子噪声源头归咎进行了重新推导,结果表明,对于辐射压噪声和散粒噪声这两类量子噪声,辐射压噪声可直接归咎于干涉仪暗口处真空涨落的正交振幅涨落,散粒噪声仅在一定条件下可完全归咎于暗口处的正交相位涨落。在明确量子噪声的源头归咎前提下,压缩光技术可提高探测器的灵敏度,但当采取不等臂干涉探测方案时,必须注意两不等臂臂长之间的长度差异关系。最后,本文也提及了如若在空间引力波探测中推广应用压缩光技术时可能需要注意的问题,包括弱光锁相放大技术的影响、不同干涉仪间的联系、数据后处理的影响以及压缩光的产生。

     

  • 图 1  第一次分束示意图

    Figure 1.  Schematic diagram of the first beam splitting

    图 2  第二次分束示意图

    Figure 2.  Schematic diagram of the second beam splitting

    图 3  可能的验证实验的简化布局

    Figure 3.  Simplified layout of possible validation experiments

  • [1] COLPI M, DANZMANN K, HEWITSON M, et al. LISA definition study report[J]. arXiv: 2402.07571, 2024. (查阅网上资料, 未能确认文献类型, 请确认) .
    [2] HU W R, WU Y L. The Taiji Program in Space for gravitational wave physics and the nature of gravity[J]. National Science Review, 2017, 4(5): 685686.
    [3] SAULSON P R. Fundamentals of Interferometric Gravitational Wave Detectors[M]. 2nd ed. Hackensack: World Scientific, 2017.
    [4] CAVES C M. Quantum-mechanical noise in an interferometer[J]. Physical Review D, 1981, 23(8): 1693-1708. doi: 10.1103/PhysRevD.23.1693
    [5] MCKENZIE K, GROSSE N, BOWEN W P, et al. Squeezing in the audio gravitational-wave detection band[J]. Physical Review Letters, 2004, 93(16): 161105. doi: 10.1103/PhysRevLett.93.161105
    [6] VAHLBRUCH H, CHELKOWSKI S, HAGE B, et al. Coherent control of vacuum squeezing in the gravitational-wave detection band[J]. Physical Review Letters, 2006, 97(1): 011101. doi: 10.1103/PhysRevLett.97.011101
    [7] The LIGO Scientific Collaboration. A gravitational wave observatory operating beyond the quantum shot-noise limit[J]. Nature Physics, 2011, 7(12): 962-965. doi: 10.1038/nphys2083
    [8] TSE M, YU H C, KIJBUNCHOO N, et al. Quantumenhanced advanced LIGO detectors in the era of gravitationalwave astronomy[J]. Physical Review Letters, 2019, 123(23): 231107. doi: 10.1103/PhysRevLett.123.231107
    [9] ACERNESE F, AGATHOS M, AIELLO L, et al. Increasing the astrophysical reach of the advanced Virgo detector via the application of squeezed vacuum states of light[J]. Physical Review Letters, 2019, 123(23): 231108. doi: 10.1103/PhysRevLett.123.231108
    [10] GANAPATHY D, JIA W, NAKANO M, et al. Broadband quantum enhancement of the LIGO detectors with frequencydependent squeezing[J]. Physical Review X, 2023, 13(4): 041021. doi: 10.1103/PhysRevX.13.041021
    [11] ACERNESE F, AGATHOS M, AIN A, et al. Frequencydependent squeezed vacuum source for the advanced virgo gravitationalwave detector[J]. Physical Review Letters, 2023, 131(4): 041403. doi: 10.1103/PhysRevLett.131.041403
    [12] BACHOR H A, RALPH T C. A Guide to Experiments in Quantum Optics[M]. 3rd ed. Weinheim: Wiley-VCH, 2019.
    [13] 罗子人, 白姗, 边星, 等. 空间激光干涉引力波探测[J]. 力学进展,2013,43(4):415-447. doi: 10.6052/1000-0992-13-044

    LUO Z R, BAI SH, BIAN X, et al. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 2013, 43(4): 415-447. (in Chinese). doi: 10.6052/1000-0992-13-044
    [14] GERRY C C, KNIGHT P L. Introductory Quantum Optics[M]. 2nd ed. Cambridge: Cambridge University Press, 2005.
    [15] GRYNBERG G, ASPECT A, FABRE C. Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light[M]. Cambridge: Cambridge University Press, 2010.
    [16] ACERNESE F, AGATHOS M, AIELLO L, et al. Quantum backaction on kg-scale mirrors: observation of radiation pressure noise in the advanced Virgo detector[J]. Physical Review Letters, 2020, 125(13): 131101. doi: 10.1103/PhysRevLett.125.131101
  • 加载中
图(3)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  39
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-30
  • 修回日期:  2024-11-22
  • 录用日期:  2024-12-13
  • 网络出版日期:  2025-01-22

目录

    /

    返回文章
    返回