留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Double Fano resonance and refractive index sensors based on parallel-arranged Au nanorod dimer metasurface arrays

ZHANG Zhi-dong ZHANG Hui-nan LIANG Jie GE Hai-xia LIU Yan-li ZHU Xu-peng

张志东, 张慧男, 梁洁, 盖海霞, 刘艳莉, 朱旭鹏. 基于Au纳米平行双棒超表面阵列的双Fano共振和折射率传感器特性研究[J]. 中国光学(中英文), 2023, 16(4): 961-971. doi: 10.37188/CO.EN-2023-0008
引用本文: 张志东, 张慧男, 梁洁, 盖海霞, 刘艳莉, 朱旭鹏. 基于Au纳米平行双棒超表面阵列的双Fano共振和折射率传感器特性研究[J]. 中国光学(中英文), 2023, 16(4): 961-971. doi: 10.37188/CO.EN-2023-0008
ZHANG Zhi-dong, ZHANG Hui-nan, LIANG Jie, GE Hai-xia, LIU Yan-li, ZHU Xu-peng. Double Fano resonance and refractive index sensors based on parallel-arranged Au nanorod dimer metasurface arrays[J]. Chinese Optics, 2023, 16(4): 961-971. doi: 10.37188/CO.EN-2023-0008
Citation: ZHANG Zhi-dong, ZHANG Hui-nan, LIANG Jie, GE Hai-xia, LIU Yan-li, ZHU Xu-peng. Double Fano resonance and refractive index sensors based on parallel-arranged Au nanorod dimer metasurface arrays[J]. Chinese Optics, 2023, 16(4): 961-971. doi: 10.37188/CO.EN-2023-0008

基于Au纳米平行双棒超表面阵列的双Fano共振和折射率传感器特性研究

详细信息
  • 中图分类号: TP394.1;TH691.9

Double Fano resonance and refractive index sensors based on parallel-arranged Au nanorod dimer metasurface arrays

doi: 10.37188/CO.EN-2023-0008
Funds: Supported by the National Natural Science Foundation of China (No.12004150); Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 2020L0316); the Guangdong Basic and Applied Basic Research Foundation (No. 2020A1515110998)
More Information
    Author Bio:

    ZHANG Zhi-dong (1985—), male, born in Jingle, Shanxi Province, Doctor, graduate student supervisor, received his Ph. D in electromagnetic field and microwave technology from Southwest Jiaotong University in 2014. He is currently an associate Professor at the school of Instrumentation and Electronics of North University of China,and he is the member of the Key Laboratory of Instrumentation Science & Dynamic Measurement of Ministry of Education. His research interests include micro/nanosensors and nanophotonics. E-mail: zdzhang@nuc.edu.cn

    LIU Yan-Li (1985—), female, born in huaibei, Anhui Province, Doctor, received her Ph. D degree from North University of China. She is an Associate Professor at the School of Information and Communication Engineering, of North University of China. Her current research interests include micro/nano-photonics. E-mail: 565347436@qq.com

    ZHU Xu-peng (1992—), male, born in Tianshui, Gansu Province, Doctor, received his Ph. D degree from Hunan University in 2018. Currently, he is an associate professor in physics at the School of Physics Science and Technology of Lingnan Normal University. His current research is focused on the surface plasmon effects of multiscale metallic micro–nanostructures. E-mail: zhuxp18@lingnan.edu.cn

    Corresponding author: 565347436@qq.comzhuxp18@lingnan.edu.cn
  • 摘要:

    为了研究超表面结构的耦合及折射率传感特性,设计了一种由两种长度不同的纳米棒组成的二聚体结构,并研究该结构的透射光谱,共振峰处的电场和电荷分布以及结构参数对透射光谱的影响。本文采用有限元法对光学性能进行仿真分析,采用准静态逼近模型解释了平行双纳米棒结构的耦合机理。在共振波长上模拟电场分布,分析电子振动模式,在透射光谱中出现了不对称线型的双Fano共振。结果表明,双Fano共振是由纳米棒和衬底之间的耦合作用产生的,可以通过结构参数和周围介质的折射率来调控,且基于Fano共振的折射率灵敏度最大可达1.137 μm/RIU。这些研究结果为设计等离激元传感器提供了理论依据。

     

  • Figure 1.  (a) The metasurface array of double parallel nanorods with different lengths. (b) The planar graph of this structure

    Figure 2.  The interactive electric energy between the moment of the double nanorods’ dipole

    Figure 3.  Transmittance spectra of the nanorod dimer nanostructures, where the distances of the short nanorod’s center deviating from the long nanorod’s center is fixed as 0 nm and 80 nm

    Figure 4.  The distribution of the normalized square of the electric field (|E|2) and the charge density of the nanorod dimer for the symmetry structure peak at A and C, and dip at B and D where S = 0 nm at (a) λA = 2.32 μm, (b) λB = 2.36 μm, (c) λC = 2.92 μm, and (d) λD = 3.00 μm

    Figure 5.  The distribution of the normalized square of electric field (|E|2) and the charge density of the double parallel nanorods for symmetry structure at the peak E, G, I and dips F, H, J with the parameter s = 80 nm at λE = 2.26 mm (a), λF = 2.30 mm (b), λG = 2.36 mm (c), λH = 2.90 mm (d), λI = 2.98 mm (e), and λJ = 3.00 mm (f).

    Figure 6.  Transmission spectra of the double parallel nanorods: (a) s = 0, 20, 40, 60, and 80 nm with fixed L2 = 800 nm, w = 100 nm, L1 = 400 nm, t = 50 nm and g = 20 nm. (b) L1 = 400, 420, 440, 460, and 480 nm with fixed S = 0 nm, w = 100 nm, L2 = 800 nm, t = 50 nm and g = 20 nm.

    Figure 7.  Transmission spectra of the double parallel nanorods. (a) g = 20, 40, 60, 80, 100 nm with fixed s = 0 nm, L1 = 400 nm, w = 100 nm, L2 = 800 nm and t = 50 nm. (b) θ = 0°, 30°, 60°, and 90° with fixed s = 0 nm, L1 = 400 nm, w = 100 nm, L2 = 800 nm, t = 50 nm, and g = 20 nm

    Figure 8.  (a) Transmission spectra varying with different refractive index n. (b) Relationship between the resonance dip wavelength λ1 and λ2 and the refractive index. (c) Relationship between resonance dip wavelength change δλ and the change in the refractive index δn

    Table  1.   Comparison of sensitivity of different methods

    Sensitivity
    (nm/RIU)
    FoMRef.
    191219[36]
    21109[37]
    365520[38]
    4138018.9[39]
    105519.5[40]
    51137This paper
    下载: 导出CSV
  • [1] KILDISHEV A V, BOLTASSEVA A, SHALAEV V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009. doi: 10.1126/science.1232009
    [2] YOON G, TANAKA T, ZENTGRAF T, et al. Recent progress on metasurfaces: applications and fabrication[J]. Journal of Physics D:Applied Physics, 2021, 54(38): 383002. doi: 10.1088/1361-6463/ac0faa
    [3] SONG Q, KHADIR S, VÉZIAN S, et al. Bandwidth-unlimited polarization-maintaining metasurfaces[J]. Science Advances, 2021, 7(5): eabe1112. doi: 10.1126/sciadv.abe1112
    [4] YANG H, HE P, Ou K, et al. Angular momentum holography via a minimalist metasurface for optical nested encryption[J]. Light:Science &Applications, 2013, 12: 78.
    [5] ARBABI A, HORIE Y, BAGHERI M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11): 937-943. doi: 10.1038/nnano.2015.186
    [6] FLEURY R, SOUNAS D L, ALÙ A. Negative refraction and planar focusing based on parity-time symmetric metasurfaces[J]. Physical Review Letters, 2014, 113(2): 023903. doi: 10.1103/PhysRevLett.113.023903
    [7] SMITH D R, SCHURIG D. Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors[J]. Physical Review Letters, 2003, 90(7): 077405. doi: 10.1103/PhysRevLett.90.077405
    [8] LIU Y H, ZHOU X, SONG K, et al. Ultrathin planar chiral metasurface for controlling gradient phase discontinuities of circularly polarized waves[J]. Journal of Physics D:Applied Physics, 2015, 48(36): 365301. doi: 10.1088/0022-3727/48/36/365301
    [9] ADATO R, YANIK A A, AMSDEN J J, et al. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(46): 19227-19232. doi: 10.1073/pnas.0907459106
    [10] WU X L, ZHENG Y, LUO Y, et al. A four-band and polarization-independent BDS-based tunable absorber with high refractive index sensitivity[J]. Physical Chemistry Chemical Physics, 2021, 23(47): 26864-26873. doi: 10.1039/D1CP04568G
    [11] CHEN H, CHEN Z H, YANG H, et al. Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene[J]. RSC Advances, 2022, 12(13): 7821-7829. doi: 10.1039/D2RA00611A
    [12] WU C, KHANIKAEV A B, SHVETS G. Broadband slow light metamaterial based on a double-continuum Fano resonance[J]. Physical Review Letters, 2011, 106(10): 107403. doi: 10.1103/PhysRevLett.106.107403
    [13] MANJAPPA M, CHIAM S Y, CONG L Q, et al. Tailoring the slow light behavior in terahertz metasurfaces[J]. Applied Physics Letters, 2015, 106(18): 181101. doi: 10.1063/1.4919531
    [14] LU C C, HU X Y, SHI K B, et al. An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces[J]. Light:Science &Applications, 2015, 4(6): e302.
    [15] XU H X, HU G, Kong X, et al. Super-reflector enabled by non-interleaved spin-momentum-multiplexed metasurface[J]. Light:Science &Applications, 2023, 12: 79.
    [16] FANO U. Effects of configuration interaction on intensities and phase shifts[J]. Physical Review, 1961, 124(6): 1866-1878. doi: 10.1103/PhysRev.124.1866
    [17] CHAU Y F C, JIANG J C, CHAO C T C, et al. Manipulating near field enhancement and optical spectrum in a pair-array of the cavity resonance based plasmonic nanoantennas[J]. Journal of Physics D:Applied Physics, 2016, 49(47): 475102. doi: 10.1088/0022-3727/49/47/475102
    [18] LIN J, Qiu M, Zhang X, et al. Tailoring the lineshapes of coupled plasmonic systems based on a theory derived from first principles[J]. Light:Science &Applications, 2020, 9: 158.
    [19] CHEN M W, CHAU Y F, TSAI D P. Three-dimensional analysis of scattering field interactions and surface Plasmon resonance in coupled silver nanospheres[J]. Plasmonics, 2008, 3(4): 157-164. doi: 10.1007/s11468-008-9069-8
    [20] CHAO C T C, CHAU Y F C, CHIANG H P. Highly sensitive metal-insulator-metal plasmonic refractive index sensor with a centrally coupled nanoring containing defects[J]. Journal of Physics D:Applied Physics, 2021, 54(11): 115301. doi: 10.1088/1361-6463/abce7f
    [21] CHAO C T C, CHAU Y F C, CHIANG H P. Multiple Fano resonance modes in an ultra-compact plasmonic waveguide-cavity system for sensing applications[J]. Results in Physics, 2021, 27: 104527. doi: 10.1016/j.rinp.2021.104527
    [22] SINGH R, CAO W, AL-NAIB I, et al. Ultrasensitive terahertz sensing with high-Q Fano resonances in metasurfaces[J]. Applied Physics Letters, 2014, 105(17): 171101. doi: 10.1063/1.4895595
    [23] MODI K S, KAUR J, SINGH S P, et al. Extremely high figure of merit in all-dielectric split asymmetric arc metasurface for refractive index sensing[J]. Optics Communications, 2020, 462: 125327. doi: 10.1016/j.optcom.2020.125327
    [24] LEE K L, HSU H Y, YOU M L, et al. Highly sensitive aluminum-based biosensors using tailorable Fano resonances in capped nanostructures[J]. Scientific Reports, 2017, 7(1): 44104. doi: 10.1038/srep44104
    [25] NOZAKI K, SHINYA A, MATSUO S, et al. Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities[J]. Optics Express, 2013, 21(10): 11877-11888. doi: 10.1364/OE.21.011877
    [26] HAO F, SONNEFRAUD Y, VAN DORPE P, et al. Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance[J]. Nano Letters, 2008, 8(11): 3983-3988. doi: 10.1021/nl802509r
    [27] FANG ZH Y, CAI J Y, YAN ZH B, et al. Removing a wedge from a metallic nanodisk reveals a Fano resonance[J]. Nano Letters, 2011, 11(10): 4475-4479. doi: 10.1021/nl202804y
    [28] YANG D J, YANG ZH J, LI Y Y, et al. Tunable Fano resonance in rod-ring plasmonic nanocavities[J]. Plasmonics, 2015, 10(2): 263-269. doi: 10.1007/s11468-014-9804-2
    [29] ZHENG CH J, JIA T Q, ZHAO H, et al. Low threshold tunable spaser based on multipolar Fano resonances in disk–ring plasmonic nanostructures[J]. Journal of Physics D:Applied Physics, 2016, 49(1): 015101. doi: 10.1088/0022-3727/49/1/015101
    [30] WANG N, ZEISBERGER M, HUEBNER U, et al. Symmetry-breaking induced magnetic Fano resonances in densely packed arrays of symmetric nanotrimers[J]. Scientific Reports, 2019, 9(1): 2873. doi: 10.1038/s41598-019-39779-x
    [31] ZHANG Y, YUE P, LIU J Y, et al. Ideal magnetic dipole resonances with metal-dielectric-metal hybridized nanodisks[J]. Optics Express, 2019, 27(11): 16143-16155. doi: 10.1364/OE.27.016143
    [32] ZHANG B X, ZHAO Y H, HAO Q ZH, et al. Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array[J]. Optics Express, 2011, 19(16): 15221-15228. doi: 10.1364/OE.19.015221
    [33] LI Q, GAO J S, YANG H G, et al. Tunable plasmonic absorber based on propagating and localized surface plasmons using metal-dielectric-metal structure[J]. Plasmonics, 2017, 12(4): 1037-1043. doi: 10.1007/s11468-016-0356-5
    [34] LI H Y, ZHOU SH M, LI J, et al. Analysis of the Drude model in metallic films[J]. Applied Optics, 2001, 40(34): 6307-6311. doi: 10.1364/AO.40.006307
    [35] ARTAR A, YANIK A A, ALTUG H. Directional double Fano resonances in plasmonic hetero-oligomers[J]. Nano Letters, 2011, 11(9): 3694-3700. doi: 10.1021/nl201677h
    [36] KHAN A D. Refractive index sensing with fano resonant L-shaped metasurface[J]. Optical Materials, 2018, 82: 168-174. doi: 10.1016/j.optmat.2018.05.066
    [37] HOANG T T, PHAM T S, NGUYEN X B, et al. High contrast and sensitive near-infrared refractive index sensors based on metal-dielectric-metal plasmonic metasurfaces[J]. Physica B:Condensed Matter, 2022, 631: 413469. doi: 10.1016/j.physb.2021.413469
    [38] LI SH, JIANG H, ZHU X J, et al. A high-sensitivity refractive index sensor with period-doubling plasmonic metasurfaces to engineer the radiation losses[J]. ACS Applied Optical Materials, 2023, 1(3): 736-744. doi: 10.1021/acsaom.2c00183
    [39] WU X J, DOU C, XU W, et al. Multiple Fano resonances in nanorod and nanoring hybrid nanostructures[J]. Chinese Physics B, 2019, 28(1): 014204. doi: 10.1088/1674-1056/28/1/014204
    [40] RAKHSHANI M R. Tunable and sensitive refractive index sensors by plasmonic absorbers with circular arrays of nanorods and nanotubes for detecting cancerous cells[J]. Plasmonics, 2020, 15(6): 2071-2080. doi: 10.1007/s11468-020-01237-0
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  293
  • HTML全文浏览量:  220
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-23
  • 修回日期:  2023-05-18
  • 网络出版日期:  2023-06-17

目录

    /

    返回文章
    返回