留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Orbital-angular-momentum spectra in coherent optical vortex beam arrays with hybrid states of polarization

YANG Ceng-hao CHENG Ke HUANG Hong-wei LIAO Sai LIANG Meng-ting SHU Ling-yun

杨嶒浩, 程科, 黄宏伟, 廖赛, 梁梦婷, 舒凌云. 杂化偏振涡旋合成光束阵列的轨道角动量谱[J]. 中国光学(中英文), 2023, 16(6): 1501-1511. doi: 10.37188/CO.EN-2023-0010
引用本文: 杨嶒浩, 程科, 黄宏伟, 廖赛, 梁梦婷, 舒凌云. 杂化偏振涡旋合成光束阵列的轨道角动量谱[J]. 中国光学(中英文), 2023, 16(6): 1501-1511. doi: 10.37188/CO.EN-2023-0010
YANG Ceng-hao, CHENG Ke, HUANG Hong-wei, LIAO Sai, LIANG Meng-ting, SHU Ling-yun. Orbital-angular-momentum spectra in coherent optical vortex beam arrays with hybrid states of polarization[J]. Chinese Optics, 2023, 16(6): 1501-1511. doi: 10.37188/CO.EN-2023-0010
Citation: YANG Ceng-hao, CHENG Ke, HUANG Hong-wei, LIAO Sai, LIANG Meng-ting, SHU Ling-yun. Orbital-angular-momentum spectra in coherent optical vortex beam arrays with hybrid states of polarization[J]. Chinese Optics, 2023, 16(6): 1501-1511. doi: 10.37188/CO.EN-2023-0010

杂化偏振涡旋合成光束阵列的轨道角动量谱

详细信息
  • 中图分类号: O436.1

Orbital-angular-momentum spectra in coherent optical vortex beam arrays with hybrid states of polarization

doi: 10.37188/CO.EN-2023-0010
Funds: Supported by Natural Science Foundation of Sichuan Province (No. 2023NSFSC0049); Key Laboratories of Sensing and Application of Intelligent Optoelectronic System in Sichuan Provincial Universities (No. ZNGD2202)
More Information
    Author Bio:

    Yang Ceng-hao (1999—), male, was born in Mian yang, Sichuan province, M. Phil, College of Optoelectronic Engineering, Chengdu University of Information Technology. His research interests are on propagation and control of High-Power Lasers. E-mail: scaxych@163.com

    Cheng Ke (1979—), male, was born in Jianli, Hubei province, Ph.D., Professor, College of Optoelectronic Engineering, Chengdu University of Information Technology. His research interests are on propagation and control of High-Power Lasers. E-mail: ck@cuit.edu.cn

    Corresponding author: ck@cuit.edu.cn
  • 摘要:

    轨道角动量(OAM)是高容量光通信和超分辨成像技术的重要参数。利用惠更斯-菲涅尔原理和相干合成理论,提出了杂化偏振涡旋合成光束阵列。详细研究了涡旋、偏振、附加拓扑电荷及子光束数对输入和输出平面光束的OAM谱的影响。结果表明:子光束的数量和杂化偏振共同影响了OAM模式的最大权重,子光束数量增加会显著提升OAM谱的最大权重,但杂化偏振却不能显著提升OAM谱的最大权重。OAM谱的最大模式位置总是等于光束中心光涡旋的总拓扑数,与子光束数无关。OAM谱所有非零权重模式的位置由涡旋、偏振、附加拓扑电荷和子光束数目共同决定。本文结果对光通信与偏振成像技术有着潜在的应用价值。

     

  • Figure 1.  Phases, polarization states and OAM spectra of a single Gaussian beam with different vortex and polarization topological charges. (a), (d), (g): (l, m)=(1, 0); (b), (e), (h): (l, m)=(1, 1); (c), (f), (i): (l, m)=(2, 2). (d), (e), (f): RH (Red) and LH (Blue) elliptical polarizations

    Figure 2.  The OAM spectra (d)−(f) and OAM densities (g)−(i) of beam arrays in coherent combinations with radial, rectangular and linear symmetries at z=0. (a), (d), (g): radial symmetry; (b), (e), (h): rectangular symmetry; (c), (f), (i): linear symmetry. The parameters are (l, m)=(1, 1), η=0, N=6 and ρ=5w0

    Figure 3.  (a) Illustration of center optical vortex at (0, 0, z) of beam array in coherent combination with radial symmetry at the output plane. (b) Spiral phase of center optical vortex. (c) OAM-spectra of the corresponding beam arrays. The parameters are (l, m)=(0, 0), η=+1, N=8 and ρ=5w0

    Figure 4.  The correspondence between the topological charge of central optical vortex and maximal modes of OAM-spectra for different l, m, η at z=10ze. (a)−(d): m=1; (e)−(h): m=2. The parameters are N=8 and ρ=3w0

    Figure 5.  OAM-spectra, spiral phases of central optical vortex and OAM densities for different η. η=−2, η=−1, η=1, and η=2 respectively, from top to bottom.The parameters are (l, m)=(1, 1), N=8, ρ=3w0 and z=10ze

    Figure 6.  (a) Effect of polarization topological charges and the number of beamlets on weight of maximal mode in OAM-spectra for a fixed l+η=2. (b) The corresponding weight in OAM-spectra for (l, η)=(2, 0). The other parameters are the same as in Fig. 5

    Figure 7.  Locations of non-zero weight for OAM-modes with an increasing of the number of beamlet N for different l, η and m. (a): (l, η, m)=(1, 0, 1), (b): (l, η, m)=(2, 0, 1), (c): (l, η, m)=(1, 0, 2), (d): (l, η, m)=(1, −2, 1)

    Table  1.   The maximal weights of OAM spectra of the proposed beam arrays for different symmetry and beamlet numbers, the other parameters are the same as in Fig. 2

    SymmetryN=4N=6N=8
    Radial0.2210.3330.432
    Rectangular0.1980.2010.174
    Linear0.1190.1060.065
    下载: 导出CSV
  • [1] SHEN Y J, WANG X J, XIE ZH W, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light:Science & Applications, 2019, 8(1): 90.
    [2] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189. doi: 10.1103/PhysRevA.45.8185
    [3] BARREIRO J T, WEI T C, KWIAT P G. Beating the channel capacity limit for linear photonic superdense coding[J]. Nature Physics, 2008, 4(4): 282-286. doi: 10.1038/nphys919
    [4] WILLNER A E, PANG K, SONG H, et al. Orbital angular momentum of light for communications[J]. Applied Physics Reviews, 2021, 8(4): 041312. doi: 10.1063/5.0054885
    [5] EYYUBOĞLU H T. Mutual coherence function based topological charge detection in a Gaussian vortex beam optical communication system[J]. Physica Scripta, 2022, 97(9): 095507. doi: 10.1088/1402-4896/ac8956
    [6] GRIER D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810-816. doi: 10.1038/nature01935
    [7] XIE G D, SONG H Q, ZHAO ZH, et al. Using a complex optical orbital-angular-momentum spectrum to measure object parameters[J]. Optics Letters, 2017, 42(21): 4482-4485. doi: 10.1364/OL.42.004482
    [8] WANG Y L, WANG Y ZH, GUO ZH Y. OAM radar based fast super-resolution imaging[J]. Measurement, 2022, 189: 110600. doi: 10.1016/j.measurement.2021.110600
    [9] MILIONE G, SZTUL H I, ALFANO R R. Propagation of a hybrid vector polarization beam in a uniaxial crystal[J]. Proceedings of SPIE, 2010, 7613: 76130I. doi: 10.1117/12.840769
    [10] GU B, PAN Y, RUI G H, et al. Polarization evolution characteristics of focused hybridly polarized vector fields[J]. Applied Physics B, 2014, 117(3): 915-926. doi: 10.1007/s00340-014-5909-8
    [11] LIAN M, GU B, ZHANG Y D, et al. Polarization rotation of hybridly polarized beams in a uniaxial crystal orthogonal to the optical axis: theory and experiment[J]. Journal of the Optical Society of America A, 2017, 34(1): 1-6. doi: 10.1364/JOSAA.34.000001
    [12] CHEN R P, CHEW K H, DAI CH Q, et al. Optical spin-to-orbital angular momentum conversion in the near field of a highly nonparaxial optical field with hybrid states of polarization[J]. Physical Review A, 2017, 96(5): 053862. doi: 10.1103/PhysRevA.96.053862
    [13] PENG Y M, XUE Y, XIAO G Z, et al. Spiral spectrum analysis and application of coherent synthetic vortex beams[J]. Acta Physica Sinica, 2019, 68(21): 214206. (in Chinese). doi: 10.7498/aps.68.20190880
    [14] YANG Y J, ZHAO Q, LIU L L, et al. Manipulation of orbital-angular-momentum spectrum using pinhole plates[J]. Physical Review Applied, 2019, 12(6): 064007. doi: 10.1103/PhysRevApplied.12.064007
    [15] ZHAO Q, DONG M, BAI Y H, et al. Measuring high orbital angular momentum of vortex beams with an improved multipoint interferometer[J]. Photonics Research, 2020, 8(5): 745-749. doi: 10.1364/PRJ.384925
    [16] YANG L J, SUN SH, SHA W E I. Manipulation of orbital angular momentum spectrum using shape-tailored metasurface[J]. Advanced Optical Materials, 2021, 9(2): 2001711. doi: 10.1002/adom.202001711
    [17] JIN ZH W, JANOSCHKA D, DENG J H, et al. Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum[J]. eLight, 2021, 1(1): 5. doi: 10.1186/s43593-021-00005-9
    [18] BAI Y H, LV H R, FU X, et al. Vortex beam: generation and detection of orbital angular momentum [Invited][J]. Chinese Optics Letters, 2022, 20(1): 012601. doi: 10.3788/COL202220.012601
    [19] SHU L Y, CHENG K, LIAO S, et al. Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals[J]. Chinese Physics B, 2023, 32(2): 024211. doi: 10.1088/1674-1056/ac7860
    [20] WANG L G, WANG L Q, ZHU SH Y. Formation of optical vortices using coherent laser beam arrays[J]. Optics Communications, 2009, 282(6): 1088-1094. doi: 10.1016/j.optcom.2008.12.004
    [21] KOTLYAR V V, KOVALEV A A. Optical vortex beams with a symmetric and almost symmetric OAM spectrum[J]. Journal of the Optical Society of America A, 2021, 38(9): 1276-1283. doi: 10.1364/JOSAA.432623
    [22] TORNER L, TORRES J P, CARRASCO S. Digital spiral imaging[J]. Optics Express, 2005, 13(3): 873-881. doi: 10.1364/OPEX.13.000873
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  443
  • HTML全文浏览量:  266
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-05
  • 修回日期:  2023-05-26
  • 录用日期:  2023-06-12
  • 网络出版日期:  2023-06-26

目录

    /

    返回文章
    返回