留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of sampling on three-dimensional surface shape measurement

QIAO Nao-sheng Shang Xue

乔闹生, 尚雪. 抽样对三维形貌测量的影响[J]. 中国光学(中英文), 2024, 17(6): 1512-1520. doi: 10.37188/CO.EN-2024-0003
引用本文: 乔闹生, 尚雪. 抽样对三维形貌测量的影响[J]. 中国光学(中英文), 2024, 17(6): 1512-1520. doi: 10.37188/CO.EN-2024-0003
QIAO Nao-sheng, Shang Xue. Influence of sampling on three-dimensional surface shape measurement[J]. Chinese Optics, 2024, 17(6): 1512-1520. doi: 10.37188/CO.EN-2024-0003
Citation: QIAO Nao-sheng, Shang Xue. Influence of sampling on three-dimensional surface shape measurement[J]. Chinese Optics, 2024, 17(6): 1512-1520. doi: 10.37188/CO.EN-2024-0003

抽样对三维形貌测量的影响

详细信息
  • 中图分类号: O438.2

Influence of sampling on three-dimensional surface shape measurement

doi: 10.37188/CO.EN-2024-0003
Funds: Supported by Key Scientific Research Project of Hunan Provincial Department of Education (No. 22A0484); National Natural Science Foundation of China (No. 12104150)
More Information
    Author Bio:

    QIAO Nao-sheng (1971—), male, born in Chaling, Hunan Province, Ph.D, Professor, International College, Hunan University of Arts and Science. His research interests are optical information processing. E-mail: naoshengqiao@163.com

    Corresponding author: naoshengqiao@163.com
  • 摘要:

    本文研究了抽样对三维形貌测量的影响。首先,利用傅立叶变换推出频谱表达式。在此基础上,分析了CCD像元的产生过程并给出了其表达式。然后,经抽样得到离散的变形条纹表达式,并推导出了其傅立叶频谱表达式,从而得到频域内无限重复的“频谱岛”。 最后,利用低通滤波器滤除高级频谱成份后仅保留其中一个基频成份,由逆傅立叶变换恢复信号强度。提出减小抽样间隔,即减小每根条纹抽样点数的方法,来增大抽样频率与光栅基频的比值m,使之在满足m>4的条件下能更准确地恢复物体的三维形貌。通过仿真和实验对基本原理进行验证。在仿真分析中,抽样间隔分别取8 pixels、4 pixels、2 pixels、1 pixel,后3种情况所得到的最大绝对误差值分别为第一种情况下的88.80%、38.38%和31.50%,平均绝对误差值分别为第一种情况下的71.84%、43.27%和32.26%。可见,抽样间隔越小,恢复效果越好。在实验中,取与仿真分析相同的4次抽样间隔,得到了与仿真分析相同的结论。结果表明:减小抽样间隔可提高三维形貌的测量精度,取得了更好的恢复效果。

     

  • Figure 1.  Schematic diagram of the measurement system

    Figure 2.  The simulated object surface shape

    Figure 3.  The spectra diagrams

    Figure 4.  The errors in the surface shape between the reconstructed and simulated objects

    Figure 5.  The simple experimental device system

    Figure 6.  Results of object surface shape reconstructed under different sampling conditions

    Table  1.   Error between reconstructed object and simulated object

    Sampling interval 8 pixels 4 pixels 2 pixels 1 pixels
    MAEV 1.3246 1.1762 0.5084 0.4173
    AAEV 0.4758 0.3418 0.2059 0.1535
    下载: 导出CSV
  • [1] MA X X, NI H, LU M SH, et al. A measurement method for three-dimensional inner and outer surface profiles and spatial shell uniformity of laser fusion capsule[J]. Optics & Laser Technology, 2021, 134: 106601.
    [2] FAN H, QI L, CHEN CH H, et al. Underwater optical 3-D reconstruction of photometric stereo considering light refraction and attenuation[J]. IEEE Journal of Oceanic Engineering, 2022, 47(1): 46-58. doi: 10.1109/JOE.2021.3085968
    [3] YANG J B, ZHAO J, SUN Q. Projector calibration based on cross ratio invariance[J]. Chinese Optics, 2021, 14(2): 320-328. (in Chinese). doi: 10.37188/CO.2020-0111
    [4] ZHOU P, WANG H Y, LAI J L, et al. 3D shape measurement for shiny surface using pixel-wise composed fringe pattern based on multi-intensity matrix projection of neighborhood pixels[J]. Optical Engineering, 2021, 60(10): 104101.
    [5] YANG SH CH, HUANG H L, WU G X, et al. High-speed three-dimensional shape measurement with inner shifting-phase fringe projection profilometry[J]. Chinese Optics Letters, 2022, 20(11): 112601. doi: 10.3788/COL202220.112601
    [6] LU L L, WU ZH J, ZHANG Q C, et al. High-efficiency dynamic three-dimensional shape measurement based on misaligned gray-code light[J]. Optics and Lasers in Engineering, 2022, 150: 106873. doi: 10.1016/j.optlaseng.2021.106873
    [7] FENG W, XU SH N, WANG H H, et al. Three-dimensional measurement method of highly reflective surface based on per-pixel modulation[J]. Chinese Optics, 2022, 15(3): 488-497. (in Chinese). doi: 10.37188/CO.2021-0220
    [8] QIAO N SH, ZHANG F. Method for reducing phase errors due to CCD nonlinearity[J]. Optik, 2016, 127(13): 5207-5210. doi: 10.1016/j.ijleo.2016.03.012
    [9] LIU H Q, MA H M, TANG Q X, et al. Investigation of noise amplification questions in satellite jitter detected from CCDs' parallax observation imagery: a case for 3 CCDs[J]. Optics Communications, 2022, 503: 127422. doi: 10.1016/j.optcom.2021.127422
    [10] XUE X, ZHANG CH M, ZHAO J K, et al. The influence of CCD undersampling on the encircled energy of SVOM-VT[J]. Proceedings of the SPIE, 2019, 11341: 1134104.
    [11] DU Y ZH, FENG G Y, ZHANG K, et al. Effect of CCD nonlinearity on wavefront detection by shearing interferometry[J]. High Power Laser and Particle Beams, 2010, 22(8): 1775-1779. doi: 10.3788/HPLPB20102208.1775
    [12] CHENG SH B, ZHANG H G, WANG ZH B, et al. Nonlinearity property testing of the scientific grade optical CCD[J]. Acta Optica Sinica, 2012, 32(4): 0404001. (in Chinese). doi: 10.3788/AOS201232.0404001
    [13] QIAO N SH, SUN P. Influence of CCD nonlinearity effect on the three-dimensional shape measurement of dual frequency grating[J]. Chinese Optics, 2021, 14(3): 661-669. (in Chinese). doi: 10.37188/CO.2020-0143
    [14] LI J, SU X Y, GUO L R. Improved Fourier transform profilometry for the automatic measurement of three-dimensional object shapes[J]. Optical Engineering, 1990, 29(12): 1439-1444.
    [15] QIAO N SH. Effect of CCD nonlinearity on spectrum distribution[J]. Optik, 2016, 127(20): 8607-8612. doi: 10.1016/j.ijleo.2016.06.070
    [16] WANG Y, LIN B. A fast and precise three-dimensional measurement system based on multiple parallel line lasers[J]. Chinese Physics B, 2021, 30(2): 024201. doi: 10.1088/1674-1056/abc14d
    [17] SUN J H, ZHANG Q Y. A 3D shape measurement method for high-reflective surface based on accurate adaptive fringe projection[J]. Optics and Lasers in Engineering, 2022, 153: 106994. doi: 10.1016/j.optlaseng.2022.106994
    [18] CAO ZH R. Dynamic 3D measurement error compensation technology based on phase-shifting and fringe projection[J]. Chinese Optics, 2023, 16(1): 184-192. (in Chinese). doi: 10.37188/CO.EN.2022-0004
    [19] QIAO N SH, SHANG X. Phase measurement with dual-frequency grating in a nonlinear system[J]. Chinese Optics, 2023, 16(3): 726-732. (in Chinese). doi: 10.37188/CO.EN.2022-0013
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  136
  • HTML全文浏览量:  57
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-31
  • 修回日期:  2024-02-25
  • 录用日期:  2024-02-28
  • 网络出版日期:  2024-03-08

目录

    /

    返回文章
    返回