留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Witnessing quantum phase transition in a non-Hermitian trapped ion system via quantum Fisher information

LIN Yu-Hao YAN Kai TAN Jia CAO Zhao-Liang HAO Xiang

蔺玉豪, 严凯, 谭佳, 曹召良, 郝翔. 通过量子Fisher信息量标度非厄米离子阱系统中的量子相变[J]. 中国光学(中英文), 2024, 17(6): 1467-1475. doi: 10.37188/CO.EN-2024-0017
引用本文: 蔺玉豪, 严凯, 谭佳, 曹召良, 郝翔. 通过量子Fisher信息量标度非厄米离子阱系统中的量子相变[J]. 中国光学(中英文), 2024, 17(6): 1467-1475. doi: 10.37188/CO.EN-2024-0017
LIN Yu-Hao, YAN Kai, TAN Jia, CAO Zhao-Liang, HAO Xiang. Witnessing quantum phase transition in a non-Hermitian trapped ion system via quantum Fisher information[J]. Chinese Optics, 2024, 17(6): 1467-1475. doi: 10.37188/CO.EN-2024-0017
Citation: LIN Yu-Hao, YAN Kai, TAN Jia, CAO Zhao-Liang, HAO Xiang. Witnessing quantum phase transition in a non-Hermitian trapped ion system via quantum Fisher information[J]. Chinese Optics, 2024, 17(6): 1467-1475. doi: 10.37188/CO.EN-2024-0017

通过量子Fisher信息量标度非厄米离子阱系统中的量子相变

详细信息
  • 中图分类号: O431.2

Witnessing quantum phase transition in a non-Hermitian trapped ion system via quantum Fisher information

doi: 10.37188/CO.EN-2024-0017
Funds: Supported by the Natural Science Foundation of China (No. 61875145); Jiangsu Key Disciplines of the Fourteenth Five-Year Plan (No. 2021135); Postgraduate Research and Practice Innovation Program of Jiangsu Province (No. KYCX24_3428)
More Information
    Author Bio:

    HAO Xiang (1981—), male, born in Huai’an, Jiangsu Province, Ph.D., Professor, Master’s supervisor. He received his Ph.D. from the Institute of Modern Optics, Soochow University in 2008. He is mainly engaged in research of quantum optics and quantum information. E-mail: xhao@mail.usts.edu.cn

    Corresponding author: xhao@mail.usts.edu.cn
  • 摘要:

    本文以具有增益损耗平衡的非厄米离子阱系统为研究对象,从量子参数测量角度,利用量子Fisher信息量标度非厄米系统的量子相变特征。通过态矢量映射方法,研究了任意两能级非厄米量子系统的一般非幺正演化规律。量子Fisher 信息量的动力学演化在奇异点附近发生突然变化,并定量表征系统的量子临界现象。根据系统物相是否具有宇称和时间反演对称特性,可以获得两种不同行为的演化过程。在对称相区域中,量子Fisher 信息量随时间呈现振荡特征,可获得较高的测量精度。在对称性被破坏的相区域里,它的含时变化经历单调递减过程。这两种动力学行为也被量子熵和量子相干证实。强调了利用量子Fisher信息来见证非厄米离子阱系统的相变。这些结论有助于非厄米量子信息技术发展。

     

  • Figure 1.  The two levels of the ion system with balanced gain and loss

    Figure 2.  The dynamics of QFI is plotted as a function of the ratio $\gamma/\varOmega $ in the condition of $\varOmega=2\text{π}\times32\;\mathrm{ kHz}, \theta=\text{π}/2,\phi=0 $. (a) The contour plot; (b) the oscillation illustrated in the PT symmetry unbroken region of $\dfrac{\gamma}{\varOmega}=0.43 $; (c) the decaying behavior in the broken phase of $\dfrac\gamma\varOmega=1.5 $

    Figure 3.  The contour plot of QFI is illustrated at a short time interval.

    Figure 4.  (a) The evolution of quantum entropy. (b) The change of $ {\mathrm{d}}S/{\mathrm{d}}t $

    Figure 5.  The evolution of quantum coherence

  • [1] ÖZDEMIR Ş K, ROTTER S, NORI F, et al. Parity–time symmetry and exceptional points in photonics[J]. Nature Materials, 2019, 18(8): 783-798. doi: 10.1038/s41563-019-0304-9
    [2] FENG L, WONG Z J, MA R M, et al. Single-mode laser by parity-time symmetry breaking[J]. Science, 2014, 346(6212): 972-975. doi: 10.1126/science.1258479
    [3] SUNADA S. Enhanced response of non-Hermitian photonic systems near exceptional points[J]. Physical Review A, 2018, 97(4): 043804. doi: 10.1103/PhysRevA.97.043804
    [4] LÜ X Y, JING H, MA J Y, et al. PT-symmetry-breaking chaos in optomechanics[J]. Physical Review Letters, 2015, 114(25): 253601.
    [5] LU T X, ZHANG H L, ZHANG Q, et al. Exceptional-point-engineered cavity magnomechanics[J]. Physical Review A, 2021, 103(6): 063708. doi: 10.1103/PhysRevA.103.063708
    [6] GUO A, SALAMO G J, DUCHESNE D, et al. Observation of PT-symmetry breaking in complex optical potentials[J]. Physical Review Letters, 2009, 103(9): 093902. doi: 10.1103/PhysRevLett.103.093902
    [7] CHEN W J, KAYA ÖZDEMIR Ş, ZHAO G M, et al. Exceptional points enhance sensing in an optical microcavity[J]. Nature, 2017, 548(7666): 192-196. doi: 10.1038/nature23281
    [8] XU H, LAI D G, QIAN Y B, et al. Optomechanical dynamics in the PT-and broken-PT-symmetric regimes[J]. Physical Review A, 2021, 104(5): 053518. doi: 10.1103/PhysRevA.104.053518
    [9] SU ZH X, YAO E X, HUANG L L, et al. Optical topological characteristics of two dimensional artificial metamaterials[J]. Chinese Optics, 2021, 14(4): 955-967. (in Chinese). doi: 10.37188/CO.2021-0074
    [10] RANGANI JAHROMI H, LO FRANCO R. Searching for exceptional points and inspecting non-contractivity of trace distance in (anti)-PT symmetric systems[J]. Quantum Information Processing, 2022, 21(4): 155. doi: 10.1007/s11128-022-03475-z
    [11] PIRES D P, MACRÌ T. Probing phase transitions in non-Hermitian systems with multiple quantum coherences[J]. Physical Review B, 2021, 104(15): 155141. doi: 10.1103/PhysRevB.104.155141
    [12] GUO Y N, WANG G Y. Witnessing criticality in non-Hermitian systems via entopic uncertainty relation[J]. New Journal of Physics, 2022, 24: 093035. doi: 10.1088/1367-2630/ac91ea
    [13] BENDER C M, BOETTCHER S, MEISINGER P N. PT-symmetric quantum mechanics[J]. Journal of Mathematical Physics, 1999, 40(5): 2201-2229. doi: 10.1063/1.532860
    [14] LU X M, WANG X G, SUN C P. Quantum Fisher information flow and non-Markovian processes of open systems[J]. Physical Review A, 2010, 82(4): 042103. doi: 10.1103/PhysRevA.82.042103
    [15] ZHONG W, SUN ZH, MA J, et al. Fisher information under decoherence in Bloch representation[J]. Physical Review A, 2013, 87(2): 022337. doi: 10.1103/PhysRevA.87.022337
    [16] YU X L, ZHANG CH J. Quantum parameter estimation of non-Hermitian systems with optimal measurements[J]. Physical Review A, 2023, 108(2): 022215. doi: 10.1103/PhysRevA.108.022215
    [17] ZLOSHCHASTIEV K G. Non-Hermitian Hamiltonians and stability of pure states[J]. The European Physical Journal D, 2015, 69(11): 253. doi: 10.1140/epjd/e2015-60384-0
    [18] MINGANTI F, MIRANOWICZ A, CHHAJLANY R W, et al. Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: the effects of quantum jumps[J]. Physical Review A, 2019, 100(6): 062131. doi: 10.1103/PhysRevA.100.062131
    [19] WANG W CH, ZHOU Y L, ZHANG H L, et al. Observation of PT-symmetric quantum coherence in a single-ion system[J]. Physical Review A, 2021, 103(2): L020201.
    [20] MIRI M A, ALÙ A. Exceptional points in optics and photonics[J]. Science, 2019, 363(6422): eaar7709.
    [21] SERGI A, GIAQUINTA P V. Linear quantum entropy and non-Hermitian Hamiltonians[J]. Entropy, 2016, 18(12): 451. doi: 10.3390/e18120451
    [22] SERGI A, ZLOSHCHASTIEV K G. Quantum entropy of systems described by non-Hermitian Hamiltonians[J]. Journal of Statistical Mechanics: Theory and Experiment, 2016, 2016: 033102. doi: 10.1088/1742-5468/2016/03/033102
    [23] BAUMGRATZ T, CRAMER M, PLENIO M B. Quantifying coherence[J]. Physical Review Letters, 2014, 113(14): 140401. doi: 10.1103/PhysRevLett.113.140401
    [24] STRELTSOV A, ADESSO G, PLENIO M B. Colloquium: quantum coherence as a resource[J]. Reviews of Modern Physics, 2017, 89(4): 041003. doi: 10.1103/RevModPhys.89.041003
  • 加载中
图(5)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  95
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-11
  • 修回日期:  2024-06-28
  • 录用日期:  2024-07-15
  • 网络出版日期:  2024-08-21

目录

    /

    返回文章
    返回