留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and fabrication of an optical film for an external cavity diode laser

YOU Dao-ming TAN Man-qin GUO Wen-tao CAO Ying-chun WANG Zi-jie YANG Qiu-rui WAN Li-li WANG Xin LIU Hen

游道明, 谭满清, 郭文涛, 曹营春, 王子杰, 杨秋蕊, 万丽丽, 王鑫, 刘珩. 光纤光栅外腔激光器光学薄膜的研制[J]. 中国光学(中英文). doi: 10.37188/CO.EN.2022-0010
引用本文: 游道明, 谭满清, 郭文涛, 曹营春, 王子杰, 杨秋蕊, 万丽丽, 王鑫, 刘珩. 光纤光栅外腔激光器光学薄膜的研制[J]. 中国光学(中英文). doi: 10.37188/CO.EN.2022-0010
YOU Dao-ming, TAN Man-qin, GUO Wen-tao, CAO Ying-chun, WANG Zi-jie, YANG Qiu-rui, WAN Li-li, WANG Xin, LIU Hen. Design and fabrication of an optical film for an external cavity diode laser[J]. Chinese Optics. doi: 10.37188/CO.EN.2022-0010
Citation: YOU Dao-ming, TAN Man-qin, GUO Wen-tao, CAO Ying-chun, WANG Zi-jie, YANG Qiu-rui, WAN Li-li, WANG Xin, LIU Hen. Design and fabrication of an optical film for an external cavity diode laser[J]. Chinese Optics. doi: 10.37188/CO.EN.2022-0010

光纤光栅外腔激光器光学薄膜的研制

Design and fabrication of an optical film for an external cavity diode laser

doi: 10.37188/CO.EN.2022-0010
Funds: The work was financially supported by the Science & Technology Program of the State Grid Corporation of China Co., Ltd. (No. 5700-202058482A-0-0-00)
More Information
    Author Bio:

    YOU Dao-ming (1998—), got his BS from Harbin Institute of Technology in 2020. Now he is a postgraduate student at the University of Chinese Academy of Science and Institute of semiconductors under the supervision of Prof. Man-qin Tan. His research focuses on semiconductor optoelectronic devices and integration technology. Email: youdaoming20@semi.ac.cn

    TAN Man-qin (1967—), got his Ph.D. from the Beijing Institute of Technology in 1996. Now he is a research fellow at the Institute of Semiconductors, CAS, and he is also a professor at the University of Chinese Academy of Science. His research focuses on semiconductor optoelectronic devices and modules for sensing. Email: mqtan@semi.ac.cn

    GUO Wen-tao (1987—), got his Ph.D. from the Institute of Semiconductors in 2014. Now he is a research assistant at the Institute of Semiconductors, CAS. His research focuses on semiconductor optoelectronic devices and modules for sensing. Email: wtguo@semi.ac.cn

    Corresponding author: mqtan@semi.ac.cnwtguo@semi.ac.cn
  • 摘要:

    腔面光学薄膜是光纤光栅外腔激光器(ECL)的关键结构,基于平面波方法(PWM)被广泛应用于腔面光学薄膜的设计,然而该设计在ECL中往往不理想。本文使用时域有限差分方法分析其中的问题,并考虑了腔面尺寸和结构影响。仿真结果显示,PWM设计存在反射率差和反射曲线偏移等问题,实际的反射特性显著偏离设计值。因此重点优化了薄膜设计,并采用磁控溅射工艺镀膜,测量结果显示,优化后增透膜的反射率降低30%,高反膜反射率提高7%,所制备的ECL单模功率超过650 mW。本文为ECL和其他半导体光电子器件的腔面光学薄膜研制提供了参考。

     

  • 图 1  仿真模型(a)LD物理模型(b)简化的腔面结构示意图(c)非对称结构示意图(d)折射率分布示意图

    Figure 1.  The simulation model (a) physical model of LD; (b) simplified facet schematic; (c) Schematic diagram of asymmetric structure; (d) refractive index distribution of the facet.

    图 2  不同尺寸腔面上光学薄膜的反射率(a)增透膜(b)高反膜

    Figure 2.  Reflectivity of optical films on various-sized facets at 980 nm (a) AR film; (b) HR film.

    图 3  增透膜的反射曲线(a)单层膜(b)双层膜

    Figure 3.  The reflection curves of AR film (a) single-layer; (b) double-layer.

    图 4  不同HL对数的高反膜反射率,插图为5对HL的高反膜反射曲线

    Figure 4.  Reflectivity of HR film under different HL logarithm, the insert is the reflection curves of 5 pairs of HR film.

    图 5  ASOC和SOC腔面光学薄膜的反射率(a)增透膜(b)高反膜

    Figure 5.  Reflectivity of optical films on ASOC and SOC facets (a) AR film; (b) HR film.

    图 6  不同膜厚的反射率扫描图(a)增透膜(b)高反膜

    Figure 6.  Reflectivity sweep at various film thicknesses (a) AR film; (b) HR film.

    图 7  优化前后的反射曲线(a)增透膜(b)高反膜

    Figure 7.  Reflection curves of optical films before and after optimization (a) AR film; (b) HR film.

    图 8  GaAs陪片上优化薄膜的反射曲线(a)增透膜(b)高反膜

    Figure 8.  Reflection curves of optimized optical films on GaAs wafer (a) AR film; (b) HR film.

    图 9  光学薄膜形貌(a)光学显微镜图片(b)SEM图片

    Figure 9.  Surface of the optical film (a) image of the optical microscope; (b) image of SEM.

    图 10  单面镀膜管芯的特性(a)前后腔面功率(b)前后腔面出光功率比

    Figure 10.  Statistical diagram of LD parameters of single facet coating (a) output power of the front and rear facets; (b) power ratio of the front and rear facets.

    图 11  (a)纹波图(b)纹波系数统计图

    Figure 11.  (a) super radiance spectrum; (b) statistical diagram of the ripple index.

    图 12  光学薄膜优化后的ECL特性(a)光谱图(b)PIV特性曲线

    Figure 12.  Performance of ECL with optimized optical films (a) spectrum curve; (b) power-current-voltage (PIV) curve.

    表  1  Structure parameters of the simulation model

    Table  1.   Structure parameters of the simulation model

    ParameterTypical value and range
    Core layer thickness (Hcore)0.5 um/0.05−1 um
    Core layer width (Lcore)1 um/0.2−2 um
    Core layer refractive index (ncore)3.4902−3.6
    Cladding refractive index (nclad)3.4902
    Refractive index difference ($\Delta n$)3%
    下载: 导出CSV
  • [1] CUI Q, LEI Y X, CHEN Y Y, et al. Advances in wide-tuning and narrow-linewidth external-cavity diode lasers[J]. Science China Information Sciences, 2022, 65(8): 181401. doi: 10.1007/s11432-021-3454-7
    [2] MROZIEWICZ B. External cavity wavelength tunable semiconductor lasers-a review[J]. Opto-Electronics Review, 2008, 16(4): 347-366.
    [3] SWINT R. Scattering loss at waveguide facets and implications for laser efficiency[C]. 2018 IEEE International Semiconductor Laser Conference (ISLC), IEEE, 2018: 1-2.
    [4] ZHANG S Y, FENG S W, ZHANG Y M, et al. Monitoring of early catastrophic optical damage in laser diodes based on facet reflectivity measurement[J]. Applied Physics Letters, 2017, 110(22): 223503. doi: 10.1063/1.4984598
    [5] PIEGARI A, FLORY F. Optical Thin Films and Coatings: From Materials to Applications[M]. 2nd ed. Sawston: Woodhead Publishing, 2018: 26-52. (查阅所有网上资料, 未找到本条文献出版地信息, 请联系作者确认)
    [6] MOAYEDFAR M, ASSADI M K. Various types of anti-reflective coatings (ARCS) based on the layer composition and surface topography: a review[J]. Reviews on Advanced Materials Science, 2018, 53(2): 187-205. doi: 10.1515/rams-2018-0013
    [7] YUAN H, SUN CH ZH, XU J M, et al. Design and fabrication of multilayer antireflection coating for optoelectronic devices by plasma enhanced chemical vapor deposition[J]. Acta Physica Sinica, 2010, 59(10): 7239-7244. (in Chinese) doi: 10.7498/aps.59.7239
    [8] GHADIMI-MAHANI A, FARSAD E, GOODARZI A, et al. Improvement and characterization of high-reflective and anti-reflective nanostructured mirrors by ion beam assisted deposition for 944 nm high power diode laser[J]. Optics Communications, 2015, 355: 94-102. doi: 10.1016/j.optcom.2015.06.021
    [9] IKEGAMI T. Reflectivity of mode at facet and oscillation mode in double-heterostructure injection lasers[J]. IEEE Journal of Quantum Electronics, 1972, 8(6): 470-476. doi: 10.1109/JQE.1972.1077091
    [10] NGUYEN T G, MITCHELL A. Analysis of optical waveguides with multilayer dielectric coatings using plane wave expansion[J]. Journal of Lightwave Technology, 2006, 24(1): 635-642. doi: 10.1109/JLT.2005.860158
    [11] REED M, BENSON T M, KENDALL P C, et al. Antireflection-coated angled facet design[J]. IEE Proceedings - Optoelectronics, 1996, 143(4): 214-220. doi: 10.1049/ip-opt:19960597
    [12] TORABI A, SHISHEGAR A A, FARAJI-DANA R. Analysis of modal reflectivity of optical waveguide end-facets by the characteristic Green’s function technique[J]. Journal of Lightwave Technology, 2014, 32(6): 1168-1176. doi: 10.1109/JLT.2013.2297891
    [13] LABUKHIN D, LI X. Three-dimensional finite-difference time-domain simulation of facet reflection through parallel computing[J]. Journal of Computational Electronics, 2005, 4(1-2): 15-19. doi: 10.1007/s10825-005-7099-4
    [14] TANG L, TSUI K H, LEUNG S F, et al. Large-scale, adhesive-free and omnidirectional 3D nanocone anti-reflection films for high performance photovoltaics[J]. Journal of Semiconductors, 2019, 40(4): 042601. doi: 10.1088/1674-4926/40/4/042601
    [15] GUO X, LIU Q L, TIAN H J, et al. Optimization of broadband omnidirectional antireflection coatings for solar cells[J]. Journal of Semiconductors, 2019, 40(3): 032702. doi: 10.1088/1674-4926/40/3/032702
    [16] JIANG A Q, OSAMU Y, CHEN L Y. Multilayer optical thin film design with deep Q learning[J]. Scientific Reports, 2020, 10(1): 12780. doi: 10.1038/s41598-020-69754-w
    [17] TRAN V T, VAN MAI H, NGUYEN H M, et al. Machine-learning reinforcement for optimizing multilayered thin films: applications in designing broadband antireflection coatings[J]. Applied Optics, 2022, 61(12): 3328-3336. doi: 10.1364/AO.450946
    [18] YANG L M, PAN C Y, LU F P, et al. Anti-reflection sub-wavelength structures design for InGaN-based solar cells performed by the finite-difference-time-domain (FDTD) simulation method[J]. Optics &Laser Technology, 2015, 67: 72-77.
    [19] SHIBAYAMA J, MURAKI M, YAMAUCHI J, et al. Efficient implicit FDTD algorithm based on locally one-dimensional scheme[J]. Electronics Letters, 2005, 41(19): 1046-1047. doi: 10.1049/el:20052381
    [20] SARKAR D. FDTD Analysis of Guided Electromagnetic Wave Interaction with Time-Modulated Dielectric Medium[M]. Singapore: Springer, 2022.
    [21] JIANG H L, WU L T, ZHANG X G, et al. Computationally efficient CN-PML for EM simulations[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(12): 4646-4655. doi: 10.1109/TMTT.2019.2946160
    [22] PRUSZYŃSKA-KARBOWNIK E, MROZIEWICZ B. Measurements and analysis of antireflection coatings reflectivity related to external cavity lasers[J]. Optics Communications, 2011, 284(1): 373-375. doi: 10.1016/j.optcom.2010.08.062
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  45
  • HTML全文浏览量:  41
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-07
  • 录用日期:  2022-08-15
  • 网络出版日期:  2022-09-27

目录

    /

    返回文章
    返回