留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and fabrication of an optical film for fiber bragg grating external cavity diode lasers

YOU Dao-ming TAN Man-qing GUO Wen-tao CAO Ying-chun WANG Zi-jie YANG Qiu-rui WAN Li-li WANG Xin LIU Heng

游道明, 谭满清, 郭文涛, 曹营春, 王子杰, 杨秋蕊, 万丽丽, 王鑫, 刘珩. 光纤光栅外腔激光器光学薄膜的研制[J]. 中国光学(中英文), 2023, 16(2): 447-457. doi: 10.37188/CO.EN.2022-0010
引用本文: 游道明, 谭满清, 郭文涛, 曹营春, 王子杰, 杨秋蕊, 万丽丽, 王鑫, 刘珩. 光纤光栅外腔激光器光学薄膜的研制[J]. 中国光学(中英文), 2023, 16(2): 447-457. doi: 10.37188/CO.EN.2022-0010
YOU Dao-ming, TAN Man-qing, GUO Wen-tao, CAO Ying-chun, WANG Zi-jie, YANG Qiu-rui, WAN Li-li, WANG Xin, LIU Heng. Design and fabrication of an optical film for fiber bragg grating external cavity diode lasers[J]. Chinese Optics, 2023, 16(2): 447-457. doi: 10.37188/CO.EN.2022-0010
Citation: YOU Dao-ming, TAN Man-qing, GUO Wen-tao, CAO Ying-chun, WANG Zi-jie, YANG Qiu-rui, WAN Li-li, WANG Xin, LIU Heng. Design and fabrication of an optical film for fiber bragg grating external cavity diode lasers[J]. Chinese Optics, 2023, 16(2): 447-457. doi: 10.37188/CO.EN.2022-0010

光纤光栅外腔激光器光学薄膜的研制

详细信息
  • 中图分类号: TN248.4

Design and fabrication of an optical film for fiber bragg grating external cavity diode lasers

doi: 10.37188/CO.EN.2022-0010
Funds: Supported by the Science & Technology Program of the State Grid Corporation of China Co., Ltd. (No. 5700-202058482A-0-0-00)
More Information
    Author Bio:

    YOU Dao-ming (1998—), born in Dexing, Jiangxi Province, got his BS from Harbin Institute of Technology in 2020. Now he is a postgraduate student at the University of Chinese Academy of Science and Institute of semiconductors. His research focuses on semiconductor optoelectronic devices and integration technology. E-mail: youdaoming20@semi.ac.cn

    TAN Man-qin (1967—), born in Hengyang, Hunan Province, got his Ph.D. from the Beijing Institute of Technology in 1996. Now he is a research fellow at the Institute of Semiconductors, CAS, and he is also a professor at the University of Chinese Academy of Science. His research focuses on semiconductor optoelectronic devices and modules for sensing. E-mail: mqtan@semi.ac.cn

    GUO Wen-tao (1987—), born in Hengyang, Shanxi Province, got his Ph.D. from the Institute of Semiconductors in 2014. Now he is a research assistant at the Institute of Semiconductors, CAS. His research focuses on semiconductor optoelectronic devices and modules for sensing. E-mail: wtguo@semi.ac.cn

    Corresponding author: mqtan@semi.ac.cnwtguo@semi.ac.cn
  • 摘要:

    腔面光学薄膜是光纤光栅外腔激光器(ECL)的关键结构,平面波方法(PWM)被广泛应用于腔面光学薄膜的设计,然而该设计在ECL中的实际应用效果往往并不理想。本文在使用PWM方法时通过时域有限差分法分析其中的原因,并考虑腔面尺寸和结构影响。仿真结果显示,PWM设计存在反射率差和反射曲线偏移等问题,实际的反射特性显著偏离设计值。因此本文重点优化了薄膜设计,并采用磁控溅射工艺镀膜。测量结果显示,优化后增透膜的反射率降低了30%,高反膜反射率增至96%以上,所制备的ECL的光纤输出功率超过650 mW。本文研究结果为ECL和其他半导体光电子器件的腔面光学薄膜研制提供了参考。

     

  • Figure 1.  (a) The simulation model; (b) schematic diagram of simplified facet; (c) schematic diagram of asymmetric structure; (d) linear and parabolic refractive index distributions

    Figure 2.  Reflectivity of optical films on various-sized facets at 980 nm. (a) AR film; (b) HR film

    Figure 3.  The reflection curves of AR film. (a) Single-layer; (b) double-layer

    Figure 4.  Reflectivity of HR film under different HL logarithms, the insert is the reflection curves of 5 pairs of HR film

    Figure 5.  Reflectivities of different optical films on ASOC and SOC facets. (a) AR film; (b) HR film

    Figure 6.  Reflectivity sweep at various film thicknesses. (a) AR film; (b) HR film

    Figure 7.  Reflection curves of optical films before and after optimization. (a) AR film; (b) HR film

    Figure 8.  Reflection curves of optimized optical films on GaAs wafer. (a) AR film; (b) HR film

    Figure 9.  Surface images of the optical film

    Figure 10.  Statistical diagram of LD parameters of single facet coating. (a) Output power of the front and rear facets; (b) power ratio of the front and rear facets

    Figure 11.  (a) Superradiation spectrum and (b) statistical diagram of the ripple index

    Figure 12.  Performance of ECL with optimized optical films (a) Spectrum curve; (b) power-current-voltage (PIV) curve

    Table  1.   Structural parameters of the simulation model

    ParameterTypical value and range
    Core layer thickness (Hcore)0.5 μm/0.05−1 μm
    Core layer width (Lcore)1 μm/0.2−2 μm
    Core layer refractive index (ncore)3.4902−3.6
    Cladding refractive index (nclad)3.4902
    Refractive index difference ($\Delta n$)3%
    下载: 导出CSV
  • [1] CUI Q, LEI Y X, CHEN Y Y, et al. Advances in wide-tuning and narrow-linewidth external-cavity diode lasers[J]. Science China Information Sciences, 2022, 65(8): 181401. doi: 10.1007/s11432-021-3454-7
    [2] SWINT R. Scattering loss at waveguide facets and implications for laser efficiency[C]. 2018 IEEE International Semiconductor Laser Conference (ISLC), IEEE, 2018: 1-2.
    [3] ZHANG S Y, FENG S W, ZHANG Y M, et al. Monitoring of early catastrophic optical damage in laser diodes based on facet reflectivity measurement[J]. Applied Physics Letters, 2017, 110(22): 223503. doi: 10.1063/1.4984598
    [4] MROZIEWICZ B. External cavity wavelength tunable semiconductor lasers-a review[J]. Opto-Electronics Review, 2008, 16(4): 347-366.
    [5] PIEGARI A, FLORY F. Optical Thin Films and Coatings: From Materials to Applications[M]. 2nd ed. Sawston, Cambridge: Woodhead Publishing, 2018: 26-52.
    [6] MOAYEDFAR M, ASSADI M K. Various types of anti-reflective coatings (ARCS) based on the layer composition and surface topography: a review[J]. Reviews on Advanced Materials Science, 2018, 53(2): 187-205. doi: 10.1515/rams-2018-0013
    [7] YUAN H, SUN CH ZH, XU J M, et al. Design and fabrication of multilayer antireflection coating for optoelectronic devices by plasma enhanced chemical vapor deposition[J]. Acta Physica Sinica, 2010, 59(10): 7239-7244. (in Chinese) doi: 10.7498/aps.59.7239
    [8] GHADIMI-MAHANI A, FARSAD E, GOODARZI A, et al. Improvement and characterization of high-reflective and anti-reflective nanostructured mirrors by ion beam assisted deposition for 944 nm high power diode laser[J]. Optics Communications, 2015, 355: 94-102. doi: 10.1016/j.optcom.2015.06.021
    [9] IKEGAMI T. Reflectivity of mode at facet and oscillation mode in double-heterostructure injection lasers[J]. IEEE Journal of Quantum Electronics, 1972, 8(6): 470-476. doi: 10.1109/JQE.1972.1077091
    [10] SHIBAYAMA J, MURAKI M, YAMAUCHI J, et al. Efficient implicit FDTD algorithm based on locally one-dimensional scheme[J]. Electronics Letters, 2005, 41(19): 1046-1047. doi: 10.1049/el:20052381
    [11] NGUYEN T G, MITCHELL A. Analysis of optical waveguides with multilayer dielectric coatings using plane wave expansion[J]. Journal of Lightwave Technology, 2006, 24(1): 635-642. doi: 10.1109/JLT.2005.860158
    [12] REED M, BENSON T M, KENDALL P C, et al. Antireflection-coated angled facet design[J]. IEE Proceedings - Optoelectronics, 1996, 143(4): 214-220. doi: 10.1049/ip-opt:19960597
    [13] TORABI A, SHISHEGAR A A, FARAJI-DANA R. Analysis of modal reflectivity of optical waveguide end-facets by the characteristic Green’s function technique[J]. Journal of Lightwave Technology, 2014, 32(6): 1168-1176. doi: 10.1109/JLT.2013.2297891
    [14] LABUKHIN D, LI X. Three-dimensional finite-difference time-domain simulation of facet reflection through parallel computing[J]. Journal of Computational Electronics, 2005, 4(1-2): 15-19. doi: 10.1007/s10825-005-7099-4
    [15] TANG L, TSUI K H, LEUNG S F, et al. Large-scale, adhesive-free and omnidirectional 3D nanocone anti-reflection films for high performance photovoltaics[J]. Journal of Semiconductors, 2019, 40(4): 042601. doi: 10.1088/1674-4926/40/4/042601
    [16] GUO X, LIU Q L, TIAN H J, et al. Optimization of broadband omnidirectional antireflection coatings for solar cells[J]. Journal of Semiconductors, 2019, 40(3): 032702. doi: 10.1088/1674-4926/40/3/032702
    [17] JIANG A Q, OSAMU Y, CHEN L Y. Multilayer optical thin film design with deep Q learning[J]. Scientific Reports, 2020, 10(1): 12780. doi: 10.1038/s41598-020-69754-w
    [18] TRAN V T, VAN MAI H, NGUYEN H M, et al. Machine-learning reinforcement for optimizing multilayered thin films: applications in designing broadband antireflection coatings[J]. Applied Optics, 2022, 61(12): 3328-3336. doi: 10.1364/AO.450946
    [19] YANG L M, PAN C Y, LU F P, et al. Anti-reflection sub-wavelength structures design for InGaN-based solar cells performed by the finite-difference-time-domain (FDTD) simulation method[J]. Optics &Laser Technology, 2015, 67: 72-77.
    [20] SARKAR D. FDTD Analysis of Guided Electromagnetic Wave Interaction with Time-Modulated Dielectric Medium[M]. Singapore: Springer, 2022.
    [21] JIANG H L, WU L T, ZHANG X G, et al. Computationally efficient CN-PML for EM simulations[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(12): 4646-4655. doi: 10.1109/TMTT.2019.2946160
    [22] PRUSZYŃSKA-KARBOWNIK E, MROZIEWICZ B. Measurements and analysis of antireflection coatings reflectivity related to external cavity lasers[J]. Optics Communications, 2011, 284(1): 373-375. doi: 10.1016/j.optcom.2010.08.062
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  556
  • HTML全文浏览量:  456
  • PDF下载量:  303
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-07
  • 修回日期:  2022-07-22
  • 网络出版日期:  2022-09-27

目录

    /

    返回文章
    返回