留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Imaging comparison experiment of an underwater imaging system with a semiconductor white laser, a monochromatic laser and an LED white light as the light source

JIANG Zi-qi LIU Xiao-mei CAI Fu-hong ZHANG Dian CAI Wei-yu LIU Hua

江子琦, 刘晓梅, 蔡夫鸿, 张典, 蔡惟玙, 柳华. 半导体白激光作为水下成像系统光源与单色激光、LED白光的对比成像实验[J]. 中国光学(中英文), 2023, 16(2): 466-478. doi: 10.37188/CO.EN.2022-0012
引用本文: 江子琦, 刘晓梅, 蔡夫鸿, 张典, 蔡惟玙, 柳华. 半导体白激光作为水下成像系统光源与单色激光、LED白光的对比成像实验[J]. 中国光学(中英文), 2023, 16(2): 466-478. doi: 10.37188/CO.EN.2022-0012
JIANG Zi-qi, LIU Xiao-mei, CAI Fu-hong, ZHANG Dian, CAI Wei-yu, LIU Hua. Imaging comparison experiment of an underwater imaging system with a semiconductor white laser, a monochromatic laser and an LED white light as the light source[J]. Chinese Optics, 2023, 16(2): 466-478. doi: 10.37188/CO.EN.2022-0012
Citation: JIANG Zi-qi, LIU Xiao-mei, CAI Fu-hong, ZHANG Dian, CAI Wei-yu, LIU Hua. Imaging comparison experiment of an underwater imaging system with a semiconductor white laser, a monochromatic laser and an LED white light as the light source[J]. Chinese Optics, 2023, 16(2): 466-478. doi: 10.37188/CO.EN.2022-0012

半导体白激光作为水下成像系统光源与单色激光、LED白光的对比成像实验

详细信息
  • 中图分类号: O432.3

Imaging comparison experiment of an underwater imaging system with a semiconductor white laser, a monochromatic laser and an LED white light as the light source

doi: 10.37188/CO.EN.2022-0012
Funds: Supported by National Key Research and Development Project (No. 2018YFC1407503); National Natural Science Foundation of China (No. 61964006); the Scientific Research Fund of Hainan University (No. KYQD(ZR)1853)
More Information
    Author Bio:

    JIANG Zi-qi (1996—), female, born in Fuzhou, Jiangxi Proxince, obtained her master's degree from Hainan University in 2021, mainly engaged in the synthesis of semiconductor laser white light sources, underwater imaging, etc. E-mail: 474972775@qq.com

    LIU Xiao-mei (1981—), Ph.D., female, born in Changchun, Jilin province, lecturer, received a bachelor degree from Changchun University of Science and Technology in 2004 and a doctorate degree from the University of Chinese Academy of Sciences in 2013. She is currently a teacher at the School of Mechanical and Electrical Engineering of Hainan University, mainly engaged in imaging spectroscopy, opto-mechanical integration. E-mail: liuxm@hainanu.edu.cn

    Corresponding author: liuxm@hainanu.edu.cn
  • 摘要:

    为了解决现阶段开展水下探测工作时存在的照明距离短、光谱范围窄等问题,建立了水下半导体白激光成像系统,并对该系统在不同光源及不同条件下采集图像的质量进行分析。将基于红绿蓝(RGB)三基色半导体激光器合成的功率为220 mW、色温为6469 K的白激光作为水下照明光源,分别与红、绿、蓝三种单色激光及LED白光光源在不同条件下的水下成像效果进行对比。对于不同水下光源采集的图像,使用不同算法对其进行处理、分析及质量评价。实验结果表明:半导体白激光作为水下光源,采集的图像不仅在细节信息及结构完整性上优于LED白光光源,同时在目标物色彩还原度以及边缘特征信息完整度方面也优于单色激光。半导体白激光具有能量集中、显色性强、光照度高的优势,其光源性能可满足水下低照度的成像要求,在相同的成像系统及成像距离下可获得真实性更强、质感更好、目标物特征信息更多的图像。

     

  • Figure 1.  Schematic diagram of the underwater laser imaging experiment

    Figure 2.  Experimental setup for red, green and blue lasers

    Figure 3.  Output spectrum of semiconductor white laser

    Figure 4.  Output spectrum of the semiconductor red laser

    Figure 5.  Output spectrum of the semiconductor green laser

    Figure 6.  Output spectrum of the semiconductor blue laser

    Figure 7.  Underwater lighting test with different light sources

    Figure 8.  The lighting effect of different light sources illuminating green leaves, safflower and oranges in clear water at a distance of 5 cm from the water surface

    Figure 9.  The lighting effect of different light sources illuminating green leaves, safflower and orange targets in clear water at a distance of 19 cm from the water surface

    Figure 10.  The lighting effects of different light sources illuminating green leaves, safflower, and oranges in seawater at a distance of 5 cm from the water surface

    Figure 11.  The lighting effects of different light sources illuminating green leaves, safflower, and oranges in seawater at a distance of 19 cm from the water surface

    Figure 12.  Images of different size templates with the underwater imaging distance of 19 cm processed by median filter method. (a) Original image; (b) gray image; template processing results with (c) 3×3 window size; (d) 5×5 window size; (e) 7×7 window size; (f) 9×9 window size

    Figure 13.  Image processing results of the histogram equalization algorithm with an underwater imaging distance of 19 cm

    Figure 14.  Original image (left) and processing results (right) of piecewise linear grayscale transformation of underwater imaging at a distance of 19 cm

    Figure 15.  Imaging results with different light sources when the underwater imaging distance is 15 cm in clear water and seawater

    Figure 16.  Imaging with different light sources near the water surface in clear water and seawater

    Figure 17.  Image processing results obtained with the light source LED1 in seawater imaging on the water surface

    Figure 18.  Image processing results obtained with the light source LED2 in seawater imaging on the water surface

    Figure 19.  Image processing results obtained with the light source white laser in seawater imaging on the water surface

    Figure 20.  Image processing and evaluation method

    Figure 21.  Image processing results of object A taken near the water surface under different white light sources in seawater

    Figure 22.  Image processing results of object B taken near the water surface under different white light sources in seawater

    Table  1.   Relevant optical parameters of the LED white light source

    LED1LED2
    Color temperature/K72615846
    Dominant wavelength/nm477.9518.9
    Color rendering index/Ra6364.9
    R proportion/(%)11.711.8
    G proportion/(%)86.486.2
    B proportion/(%)1.82
    下载: 导出CSV

    Table  2.   Results of Peak Signal to Noise Ratio (PSNR)

    LED1 object A/BLED2 object A/Bwhite laser object A/B
    CLAHE12.8346/14.558813.1192/16.535820.1845/20.4774
    Laplacian
    Pyramid
    Fusion
    18.9785/17.007117.8455/13.035919.0232/18.9562
    F-C12.2237/12.972812.3596/11.964117.0214/17.6895
    C-F12.0095/11.704811.5700/10.876217.1908/16.0493
    下载: 导出CSV

    Table  3.   Results of Structural Similarity Image Integnity(SSIM)

    LED1 object A/BLED2 object A/Bwhite laser object A/B
    CLAHE0.8416/0.71220.7904/0.87090.8230/0.9070
    Laplacian
    Pyramid
    Fusion
    0.9279/0.92510.9249/0.92910.9465/0.9398
    F-C0.8088/0.65900.7510/0.80580.7550/0.8749
    C-F0.8271/0.56150.7610/0.73920.7687/0.8184
    下载: 导出CSV
  • [1] YANG Y, ZHUANG S L, KAI B C. High brightness laser-driven white emitter for Etendue-limited applications[J]. Applied Optics, 2017, 56(30): 8321-8325. doi: 10.1364/AO.56.008321
    [2] CANTORE M, PFAFF N, FARRELL R M, et al. High luminous flux from single crystal phosphor-converted laser-based white lighting system[J]. Optics Express, 2016, 24(2): A215-A221. doi: 10.1364/OE.24.00A215
    [3] 田景玉. 高功率半导体激光器外腔合束技术及白激光研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2019.

    TIAN J Y. Research on high power diode laser external cavity beam combination and white laser[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2019. (in Chinese)
    [4] LV W ZH, LIU W Q, ZHANG D L. Colorimetric analysis of laser and LED hybrid projection sources[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(2): 369-373. (in Chinese) doi: 10.3788/YJYXS20153002.0369
    [5] HE S L, LI SH, CHEN X, et al. Application of hyperspectral imager and lidar in marine biological detection[J]. Infrared and Laser Engineering, 2021, 50(6): 20211033. (in Chinese) doi: 10.3788/IRLA20211033
    [6] TANG G B, ZHANG W, GUAN X W. Research on resolution automatic detection algorithm of underwater laser imaging system[J]. Ship Electronic Engineering, 2021, 41(10): 170-173,183. (in Chinese) doi: 10.3969/j.issn.1672-9730.2021.10.037
    [7] SUN P. Underwater optical imaging technology and application[J]. Scientific and Technological Innovation, 2021(16): 53-54. (in Chinese) doi: 10.3969/j.issn.1673-1328.2021.16.027
    [8] YE Q, FAN Y S, BIAN J T, et al. Development of a green laser pumped by flash lamp applicable to underwater synchronous lightening[J]. Acta Photonica Sinica, 2018, 47(11): 1114004. (in Chinese) doi: 10.3788/gzxb20184711.1114004
    [9] LIANG H X, SHEN T H, WANG ZH Y, et al. Research and design of underwater wireless optical communication system with dual light sources[J]. Infrared and Laser Engineering, 2021, 50(9): 20200445. (in Chinese) doi: 10.3788/IRLA20200445
    [10] ZHANG ZH, ZHANG X W, SHI S F, et al. Underwater image restoration algorithm based on red and blue channel prior active light source polarization[J]. Computer Measurement & Control, 2022, 30(9). (in Chinese)
  • 加载中
图(22) / 表(3)
计量
  • 文章访问数:  974
  • HTML全文浏览量:  437
  • PDF下载量:  345
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-22
  • 修回日期:  2022-08-03
  • 网络出版日期:  2022-09-27

目录

    /

    返回文章
    返回