留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Microwave photonic RF frequency multiplying phase shifter with tunable multiplication factor and a full 360-deg tunable range

YAN Ying MA Jian-xin

燕颖, 马健新. 基于马赫曾德尔调制器的倍频因子和输出相位可调的微波光子移相器[J]. 中国光学(中英文), 2023, 16(4): 948-960. doi: 10.37188/CO.EN.2022-0019
引用本文: 燕颖, 马健新. 基于马赫曾德尔调制器的倍频因子和输出相位可调的微波光子移相器[J]. 中国光学(中英文), 2023, 16(4): 948-960. doi: 10.37188/CO.EN.2022-0019
YAN Ying, MA Jian-xin. Microwave photonic RF frequency multiplying phase shifter with tunable multiplication factor and a full 360-deg tunable range[J]. Chinese Optics, 2023, 16(4): 948-960. doi: 10.37188/CO.EN.2022-0019
Citation: YAN Ying, MA Jian-xin. Microwave photonic RF frequency multiplying phase shifter with tunable multiplication factor and a full 360-deg tunable range[J]. Chinese Optics, 2023, 16(4): 948-960. doi: 10.37188/CO.EN.2022-0019

基于马赫曾德尔调制器的倍频因子和输出相位可调的微波光子移相器

详细信息
  • 中图分类号: O482.31

Microwave photonic RF frequency multiplying phase shifter with tunable multiplication factor and a full 360-deg tunable range

doi: 10.37188/CO.EN.2022-0019
Funds: Supported by the Fund of State Key Laboratory of IPOC (No. IPOC2020ZT06)
More Information
    Author Bio:

    YAN Ying (1997—), female, born in Shanxi Province, master student. She obtained a bachelor’s degree from University of Science and Technology Beijing in 2016, and now is a master’s degree candidate at the Beijing University of Posts and Telecommunications, China. She is mainly engaged in microwave photonics technology. E-mail: 13263209188@163.com

    Ma Jian-xin (1977—), male, born in Henan Province, Ph.D., professor and doctoral supervisor. He received the Ph.D. degree in optical communication from the Beijing University of Posts and Telecommunications, China, in 2007. He is currently a Professor at the Beijing University of Posts and Telecommunications. He has authored or coauthored more than 100 scientific publications appearing in journals or international conferences. His research interests include microwave photonics and optical communications. E-mail: majianxinxy@163.com

    Corresponding author: majianxinxy@163.com
  • 摘要:

    提出一种倍频因子连续可调,且相位连续变化的微波光子移相系统。该方案使用两个并联的马赫曾德尔调制器,通过2×2光耦器与两个双并联的集成马赫曾德尔调制器级联,产生可调节的±1~4阶边带,并使用相位调制器对其中一个光波进行相移。通过调整DPMZM的射频驱动信号和直流偏置电压以及PM的直流电压,可以产生相位从0到360°连续可调的2到8次谐波。仿真结果表明,当射频信号频率为10 GHz时,可产生频率为20~80 GHz的微波信号。当相位调制器的直流偏置电压与半波电压比值在0到2间变化时,对应微波信号的相位从0°到360°变化,可以获得约20 dB的大光边带抑制比(OSSR)和电杂散抑制比(ESSR)。此外,分析了调制器消光比对输出微波信号光载波抑制比和电杂散抑制比的影响,以及光载波的波长和功率对微波信号幅度波动的影响。

     

  • Figure 1.  Schematic diagram of the proposed microwave photonic FMPS

    Figure 2.  The simulation setup of the proposed MPPS

    Figure 3.  Optical spectra of the CS-DSB modulated signal from the MZM1(a) and MZM2(b) and CS-SSB modulated signal from the upper (c) and lower (d) port of the OC1

    Figure 4.  (a) Optical spectra of the output of the OC2 and (b) electrical spectra of the photocurrent output from the PD at FMF of 2

    Figure 5.  Optical spectra of the output of the OC2 and electric domain spectra with FMF at 3 (a)(b), 4(c)(d), 5 (e)(f), 6 (g)(h), 7 (i)(j) and 8 (k)(l), respectively

    Figure 6.  OSSR and ESSR of the generated microwaves signal with different FMFs

    Figure 7.  (a) OSSR and ESSR of the generated microwaves signal varying with power of CW laser and (b) varying with ERs of MZM1

    Figure 8.  The relationship between phase and DC voltage of PM

    Figure 9.  Measured power of the generated signal at different frequencies of the optical carrier (a) and RF driving signal (c), and phase response of the FMPS at different frequencies of the optical carrier (b) and RF driving signal (d) when FMF=8

    Figure 10.  OSSR and ESSR of the generated microwave signal when (a) the modulation index of MZM1 is varied from 2.05 to 2.77 and (b) the phase difference between the two input RF signals changes from 16° to 75° when FMF=8

    Table  1.   Performance comparison of different schemes

    RefPhase shift
    range/(°)
    Linear phase
    shift
    FMFfilterstability
    [18]360No4YesNo
    [19]360No2YesNo
    [20]360Yes2YesNo
    [21]360Yes2NoNo
    [22]360No4NoNo
    [23]360No2/4NoNo
    [24]360No2/4/8YesNo
    [25]360Yes2/4/6NoNo
    proposed
    method
    360Yes2/3/4/5/6/7/8NoYes
    下载: 导出CSV

    Table  2.   Parameters of DPMZM1 and DPMZM2 setting table

    FMF=4−p+qDPMZM1DPMZM2
    Order=p−2θmVDCVmainpOrder=2+qθmVDCVmainq
    2−1π/2VπVπ/2+11π/2VπVπ/2−1
    30π/40Vπ/2+23π/2VπVπ/2+1
    4−1π/2VπVπ/2+13π/2VπVπ/2+1
    5−1π/2VπVπ/2+14π/40Vπ/2+2
    6−3π/2VπVπ/2−13π/2VπVπ/2+1
    7−3π/2VπVπ/2−14π/40Vπ/2+2
    8−4π/40Vπ/2−24π/40Vπ/2+2
    下载: 导出CSV
  • [1] SERAFINO G, PORZI C, HUSSAIN B, et al. High-performance beamforming network based on si-photonics phase shifters for wideband communications and radar applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(5): 6101011.
    [2] CHEN D, MA J X. Microwave photonic up- and down-converter with tunable phase shift based on an integrated dual-polarization dual-parallel Mach-Zehnder modulator without optically filtering[J]. Fiber and Integrated Optics, 2020, 39(2): 97-107. doi: 10.1080/01468030.2020.1734117
    [3] GAO Y SH, WEN A J, TU ZH Y, et al. Simultaneously photonic frequency downconversion, multichannel phase shifting, and IQ demodulation for wideband microwave signals[J]. Optics Letters, 2016, 41(19): 4484-4487. doi: 10.1364/OL.41.004484
    [4] CHEN Y. A wideband photonic microwave phase shifter with 360-degree phase tunable range based on a DP-QPSK modulator[J]. Optics Communications, 2018, 410: 787-792. doi: 10.1016/j.optcom.2017.11.041
    [5] ZHANG Y M, PAN SH L. Broadband microwave signal processing enabled by polarization-based photonic microwave phase shifters[J]. IEEE Journal of Quantum Electronics, 2018, 54(4): 0700112.
    [6] LI H, ZHAO SH H, LIN T, et al. A filterless reconfigurable frequency mixer based on a wideband photonic microwave phase shifter[J]. Optics Communications, 2020, 475: 126224. doi: 10.1016/j.optcom.2020.126224
    [7] LIN D D, XU X M, ZHENG P F, et al. A high-performance microwave photonic phase shifter based on cascaded silicon nitride microrings[J]. IEEE Photonics Technology Letters, 2020, 32(19): 1265-1268. doi: 10.1109/LPT.2020.3019798
    [8] ZHANG Y M, LI ZH Y, CHEN W J, et al. Broadband image-reject mixing based on a polarization-modulated dual-channel photonic microwave phase shifter[J]. IEEE Photonics Journal, 2020, 12(2): 7800409.
    [9] CHEW S X, SONG SH J, LI L W, et al. Inline microring resonator based microwave photonic phase shifter with self-mitigation of RF power variations[J]. Journal of Lightwave Technology, 2022, 40(2): 442-451. doi: 10.1109/JLT.2021.3117538
    [10] HUANG CH J, CHAN E H W. Photonic-assisted microwave frequency and phase shifter for deception jamming[J]. IEEE Photonics Journal, 2021, 13(3): 7100110.
    [11] MCKAY L, MERKLEIN M, CHOUDHARY A, et al. Broadband Brillouin phase shifter utilizing rf interference: experimental demonstration and theoretical analysis[J]. Journal of Lightwave Technology, 2020, 38(14): 3624-3636. doi: 10.1109/JLT.2020.2980308
    [12] BAI Y P, LEI M ZH, ZHENG ZH N, et al. Wideband and dispersion immune microwave photonic phase shifter with tunable optical carrier to sideband ratio[J]. Journal of Lightwave Technology, 2020, 38(19): 5262-5269. doi: 10.1109/JLT.2020.2969968
    [13] WANG X D, ZHANG J L, CHAN E H W, et al. Ultra-wide bandwidth photonic microwave phase shifter with amplitude control function[J]. Optics Express, 2017, 25(3): 2883-2894. doi: 10.1364/OE.25.002883
    [14] GUO ZH T, MA J X. Microwave photonic phase shifter with a full 360-deg tunable range based on polarization sensitive electro-optical phase modulator and polarization modulator[J]. Optical Engineering, 2018, 57(8): 086109.
    [15] TANG J, LI M, GUZZON R S, et al.. Wideband and continuously tunable microwave photonic phase shifter based on an active InP/InGaAsP microring resonator[C]. 2019 International Topical Meeting on Microwave Photonics (MWP), IEEE, 2019: 74-77.
    [16] WANG X D, CHAN E H W, MINASIAN R A. All-optical photonic microwave phase shifter based on an optical filter with a nonlinear phase response[J]. Journal of Lightwave Technology, 2013, 31(20): 3323-3330. doi: 10.1109/JLT.2013.2281833
    [17] WANG X D, CHAN E H W, MINASIAN R A. Optical-to-RF phase shift conversion-based microwave photonic phase shifter using a fiber Bragg grating[J]. Optics Letters, 2014, 39(1): 142-145. doi: 10.1364/OL.39.000142
    [18] WANG W L, WEN A J, TU ZH Y, et al. Tunable 360° microwave photonic multichannel phase shifter with frequency quadrupling[J]. Applied Optics, 2018, 57(17): 4751-4755. doi: 10.1364/AO.57.004751
    [19] FENG ZH H, FU S N, MING T, et al. Multichannel continuously tunable microwave phase shifter with capability of frequency doubling[J]. IEEE Photonics Journal, 2014, 6(1): 5500108.
    [20] LI Y Q, PEI L, LI J, et al. Filter-less frequency-doubling microwave signal generator with tunable phase shift[J]. Optics Communications, 2016, 370: 91-97. doi: 10.1016/j.optcom.2016.02.050
    [21] GUO ZH T, MA J X, HUANG SH G, et al. Microwave photonic phase shifter based on an integrated dual-polarization dual-parallel Mach-Zehnder modulator without optical filter[J]. Fiber and Integrated Optics, 2019, 38(4): 208-217. doi: 10.1080/01468030.2019.1617912
    [22] ZHANG C H, QIU X J, WEI Y F, et al.. Frequency-quadrupled microwave signal generation with tunable phase shift employing no optical filter[C]. 2018 IEEE 3rd Optoelectronics Global Conference (OGC), IEEE, 2018: 150-154.
    [23] ZHANG Y M, PAN SH L. Frequency-multiplying microwave photonic phase shifter for independent multichannel phase shifting[J]. Optics Letters, 2016, 41(6): 1261-1264. doi: 10.1364/OL.41.001261
    [24] LI H, ZHAO SH H, LIN T, et al. Generation of tunable frequency-multiplication factor signal with full range phase shift based on a DPMZM[J]. Optics Communications, 2020, 458: 124802. doi: 10.1016/j.optcom.2019.124802
    [25] HAN Y SH, ZHAO B S, LUO W J, et al. A photonic microwave phase-shifting system with continuously tunable phase shift and frequency multiplication factor[J]. Acta Photonica Sinica, 2020, 49(6): 0606001. (in Chinese)
    [26] ZHANG F W, CHEN F SH, QIU K W, et al. Broadband Ti: LiNbO3 modulator with low frequency chirp[J]. Journal of Optoelectronics·Laser, 2004, 15(9): 1016-1020.
    [27] XUE J H, LU H W. Design of asymmetric interleavers based on 2 ×2 and 3 ×3 fiber couplers[J]. Study on Optical Communications, 2013(1): 24-26. (in Chinese) doi: 10.3969/j.issn.1005-8788.2013.01.008
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  567
  • HTML全文浏览量:  353
  • PDF下载量:  287
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-08
  • 修回日期:  2022-10-18
  • 录用日期:  2022-10-31
  • 网络出版日期:  2022-12-09

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!