留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高分辨率光谱定标技术发展概况

刘倩倩 郑玉权

刘倩倩, 郑玉权. 超高分辨率光谱定标技术发展概况[J]. 中国光学, 2012, 5(6): 566-577. doi: 10.3788/CO.20120506.0566
引用本文: 刘倩倩, 郑玉权. 超高分辨率光谱定标技术发展概况[J]. 中国光学, 2012, 5(6): 566-577. doi: 10.3788/CO.20120506.0566
LIU Qian-qian, ZHENG Yu-quan. Development of spectral calibration technologies with ultra-high resolutions[J]. Chinese Optics, 2012, 5(6): 566-577. doi: 10.3788/CO.20120506.0566
Citation: LIU Qian-qian, ZHENG Yu-quan. Development of spectral calibration technologies with ultra-high resolutions[J]. Chinese Optics, 2012, 5(6): 566-577. doi: 10.3788/CO.20120506.0566

超高分辨率光谱定标技术发展概况

doi: 10.3788/CO.20120506.0566
基金项目: 

国家863高技术研究发展计划资助项目(No.2011AA12A102)

详细信息
    通讯作者: 郑玉权
  • 中图分类号: TP722.5; X831

Development of spectral calibration technologies with ultra-high resolutions

  • 摘要: 介绍了高光谱分辨率光谱定标经常采用的几种技术手段,包括谱线灯法、单色准直光法、利用可调谐激光器和气体吸收池的方法等。通过对比几种国外高光谱分辨率大气痕量气体探测仪的光谱定标技术,阐述了不同光谱定标技术的原理、实施方法以及技术特点。针对大气痕量气体探测遥感器超高分辨率光谱定标的特点,指出定标设备的带宽应能达到0.001 nm的水平,同时还应考虑采取优化定标算法、结合多种光谱定标方法等措施来满足高光谱分辨率大气痕量气体探测仪光谱定标的要求。
  • [1] 郑玉权. 温室气体遥感探测仪器发展现状[J]. 中国光学 ,2011,4(6):449-560. ZHENG Y Q. Development status of remote sensing instruments for greenhouse gases[J]. Chinese Optics,2011,4(6):449-560.(in Chinese) [2] PERSKY M J. A review of spaceborne infrared Fourier transform spectrometer for remote sensing[J]. Rev. Sci, Instrum,1995(66):4763-4797. [3] POLLOCK R,HARING R E,HOLDEN J R,et al.. The orbiting carbon observatory instrument:performance of the OCO instrument and plans for the OCO-2 instrument:sensors systems and next-generation satellites XIV[J]. SPIE,2010,7826:78260W. [4] 杨宜. 成像光谱仪光谱定标技术[J]. 红外 (月刊),2006,27(8):24-26. YANG Y. Spectral calibration of hypersperctral imager[J]. Infrared,2006,27(8):24-26.(in Chinese) [5] 李幼平,禹秉熙,王玉鹏. 成像光谱仪辐射定标影响量的测量链与不确定度[J]. 光学 精密工程 ,2006,14(5):822-828. LI Y P,YU B Y,WANG Y P,et al.. Measurement chain of influence quantities and uncertainty of radiometric calibration for imaging spectrometer[J]. Opt. Precision Eng.,2006,14(5):822-828.(in Chinese) [6] 郑玉权. 超光谱成像仪的精细光谱定标[J]. 光学 精密工程 ,2010,18(11):2347-2354. ZHENG Y Q. Precise spectral calibration for hyperspectral imager[J]. Opt. Precision Eng.,2010,18(11):2347-2354.(in Chinese) [7] 王建宇. 成像光谱仪的光谱响应函数及光谱分辨能力[J]. 成像光谱技术 ,1991:44-50. WANG J Y. Spectral response and spectral resolution of hyperspectral imaging[J]. Imaging Spectrum,1991:44-50.(in Chinese) [8] 李聪,王咏梅. 用PtNe灯对大气紫外成像光谱仪进行光谱定标[J]. 光谱学与光谱分析 ,2010,30(12):3302-3305. LI C, WANG Y M. Spectral calibration of the atmosphere ultraviolet imaging spectrograph using a PtNe lamp[J]. Spe. Spe. Anal.,2010,30(12):3302-3305.(in Chinese) [9] BOVENSMANN H,BURROWS J P,BUCHWITZ M,et al.. SCIAMACHY-mission objectives and measurement modes[J]. J. Atmos. Sci.,1999,56(2):127-150. [10] HOOGEVEEN R W M,SPRUIJT H J,BROERS B,et al.. Near-infrared focal-plane arrays for SCIAMACHY[J]. SPIE,1995,2583:459-470. [11] KRUIZINGA B,SMORENBURG C,VISSER H. Calibration concept of SCIAMACHY[J]. SPIE,1994,2209:196-209. [12] 余典,李笑,杨成龙,等. 光电直读光谱仪标定方法的研究[J]. 光学与光电技术 ,2011,9(4):88-91. YU D,LI X,YANG CH L,et al. Study on the calibration method of direct-reading spectrometer[J]. Opt. Opt. Tech.,2011,9(4):88-91. [13] MICHAEL B,HEINRICH B,MAXIMILIAN R,et al.. Passive satellite remote sensing of carbon dioxide and methane:SCIAMACHY, GOSAT, CarbonSat[J]. Geophys Ress Abstracts,2011,13:6556. [14] DELWART S,HUOT J-P, BOURG L. Calibration and early results of MERIS on ENVISAT[J]. SPIE,2003,4881:337-342. [15] CURTISS D O,JEFFREY B,ROBERT L A. Ocean PHILLS hyperspectral imager:design, characterization, and calibration[J]. Optics Express,2002,10(4):210-221. [16] BARRY P S,SHEPANSKI J,SEGAL C. Hyperion on-orbit validation of spectral calibration using atmospheric lines and an on-board system[J]. SPIE,2002,4480:231-235. [17] MAGER R,FRICKE W,BURROWS J P. SCIMACHY a new-generation of hyperspectral remote sensing instrument[J]. SPIE,1997,3106:84-94. [18] CHRIEN T G,GREEN R O,et al.. Accuracy of the spectral and radiometric calibration of the Airborne Visible/Infrared Imaging Spectroscopy of the terretrial environment[J]. SPIE,1990,1298:37-49. [19] VANE G,CHRIEN T G,MILLER E A,et al.. Spectral and radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer[J]. SPIE,1987,834:91-101. [20] AMOLD G T,FITZGERALD M F,GRANT P S,et al.. MODIS airborne simulator radiometric calibration[J]. SPIE,1996,2820:56-66. [21] JERRY Z,DANIEL G,ROBERT M,et al.. Calibration procedures and measurements for the COMPASS hyperspectral imager[J]. SPIE,2004,5425:182-188. [22] SCHYMANSKI E L,MEINER T C,MERINGER M,et al.. Result of anew straylight correction for SCIAMACHY . Proc. of the Envisat Symposium,Montreux,Switzerland, April 23-27,2007:SP-636. [23] ZADNIK J,GUERIN D,MOSS R. Calibration procedures and measurements for the COMPASS hyperspectral imager[J]. SPIE,2004,5425:182-188. [24] 黄曙江. 单色仪测波长中的不确定度分析[J]. 计量与测试技术 ,2006,33(8):12-13. HUANG SH J. Analyse two method that the single-color survey the wavelength[J]. Metr. Mea. Thec.,2006,33(8):12-13. [25] ANDERSON V E,FOX N P,NETTLETON D H,et al.. Highly stable, monochromatic and tunable optical radiation source and its application to high accuracy spectrophotometry[J]. Appl. Opt.,1992,31:536-545. [26] CRIPS D,JOHNSON C. The orbiting carbon observatory mission[J]. Acta Astronaut,2005,56:193-197. [27] CRISP D,DECOLA P L. NASA Orbiting Carbon Observatory:measuring the column averaged carbon dioxide mole fraction from space[J]. J. Appl. Remote Sensing,2008,2(1):2-6. [28] DAY J O,O'DELL C W,POLLOCK R,et al.. Preflight spectral calibration of the orbiting carbon observatory[J]. IEEE T Geosci Remote,2011,49(7):2793-2801. [29] HARING R,POLLOCK R,SUTIN B. Current development status of the orbiting carbon observatory instrument optical design.Infared Spaceborne Remote Sensing[J]. SPIE,2005,5883:58830C. [30] HAMAZAKI T,KUZE A,KONDO K. Sensor system for Greenhouse Gas Observing Satellite(GOSAT)[J]. SPIE,2004,5543:275-283. [31] GENEST J,TREMBLAY P. Instrument line shape of Fourier transform spectrometers:analytic solutions for nonuniformly illuminated off-axis detectors[J]. Appl. Opt.,1999,38(25):5438. [32] KAMEYAMA S,IMAKI M. Development of 1.6 m continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing[J]. Opt. Lett.,2009,34(10):1513-1515. [33] SHIOMI K,KAWAKAMI S,KINA T,et al.. Calibration plan of GOSAT sensors[J]. SPIE,2010,6744:67440G. [34] SAKAIZAWA D,KAWAKAMI S,NAKAJIMA M,et al.. Path-averaged atmospheric CO2 measurement using a 1.57 μm active remote sensor compared with multi-positioned in situ sensors[J]. SPIE,2009,7460:7460061. [35] SHIOMI K,SUTO H,KAWAKAMI S,et al.. Calibration plan of GOSAT TANSO . Conference in Fourier Transform Spectroscopy(FTS),Sante Fe,New Mexico,Feb 11,2007. [36] NOEL S,BOVENSMANN H,BURROWS J P,et al.. SCIAMACHY instrument on ENVISAT-1[J]. SPIE,1998,3498:99-104.
  • [1] 钟笠, 宋迪, 焦月, 李晗, 李国林, 季文海.  具有复杂光谱特征的丙烯气体的TDLAS检测技术研究 . 中国光学, 2020, 13(5): 1044-1054. doi: 10.37188/CO.2019-0203
    [2] 迟明波, 韩欣欣, 徐阳, 舒风风, 吴一辉.  宽谱段高分辨扫描光谱定标技术 . 中国光学, 2020, 13(2): 249-257. doi: 10.3788/CO.20201302.0249
    [3] 安玲坪, 王爽, 张耿, 李娟, 刘学斌.  大孔径静态干涉成像光谱仪径向畸变导致谱线偏移误差的校正方法 . 中国光学, 2020, 13(6): 1-8. doi: 10.37188/CO.2020-0084
    [4] 张磊, 陈绍武, 赵海川, 王平, 武俊杰.  基于光电探测的多光谱测温装置 . 中国光学, 2019, 12(2): 289-293. doi: 10.3788/CO.20191202.0289
    [5] 张天一, 朱永田, 侯永辉, 张凯, 胡中文, 王磊, 陈忆, 姜海娇, 汤振, 许明明, 姜明达.  LAMOST高分辨率光谱仪研制 . 中国光学, 2019, 12(1): 148-155. doi: 10.3788/CO.20191201.0148
    [6] 闫歌, 许廷发, 马旭, 张宇寒, 王茜, 谭翠媚.  动态测量的高光谱图像压缩感知 . 中国光学, 2018, 11(4): 550-559. doi: 10.3788/CO.20181104.0550
    [7] 刘志贺, 吴长锋.  超分辨率成像荧光探针材料应用进展 . 中国光学, 2018, 11(3): 344-362. doi: 10.3788/CO.20181103.0344
    [8] 何阳, 黄玮, 王新华, 郝建坤.  稀疏阈值的超分辨率图像重建 . 中国光学, 2016, 9(5): 532-539. doi: 10.3788/CO.20160905.0532
    [9] 吕世良, 刘金国, 王晓茜.  对地观测高分辨率TDICCD相机调焦控制系统设计 . 中国光学, 2015, 8(6): 1013-1019. doi: 10.3788/CO.20150806.1013
    [10] 冯书谊, 张宁, 沈霁, 叶盛, 张震.  基于反射率特性的高光谱遥感图像云检测方法研究 . 中国光学, 2015, 8(2): 198-204. doi: 10.3788/CO.20150802.0198
    [11] 蔡浩原.  高分辨率表面等离子体显微镜综述 . 中国光学, 2014, 7(5): 691-700. doi: 10.3788/CO.20140705.0691
    [12] 卫沛锋, 刘欣悦, 林旭东, 董磊, 王鸣浩.  自适应光学系统校正后实际分辨率评价指标 . 中国光学, 2014, 7(4): 672-678. doi: 10.3788/CO.20140704.0672
    [13] 陈健, 高慧斌, 王伟国, 张振东, 路明.  超分辨率复原方法相关原理研究 . 中国光学, 2014, 7(6): 897-910. doi: 10.3788/CO.20140706.0897
    [14] 杜小平, 刘明, 夏鲁瑞, 陈杭.  基于光谱角累加的高光谱图像异常检测算法 . 中国光学, 2013, 6(3): 325-331. doi: 10.3788/CO.20130603.0325
    [15] 赵其昌, 杨勇, 李叶飞, 董长哲.  大气痕量气体遥感探测仪发展现状和趋势 . 中国光学, 2013, 6(2): 156-162. doi: 10.3788/CO.20130602.0156
    [16] 陈健, 王伟国, 高慧斌, 刘廷霞, 吉桐伯, 于洪君.  紫外探测器的辐射定标及标准传递 . 中国光学, 2012, 5(4): 423-429. doi: 10.3788/CO.20120504.0423
    [17] 郑玉权.  温室气体遥感探测仪器发展现状 . 中国光学, 2011, 4(6): 546-561.
    [18] 张军强, 邵建兵, 颜昌翔, 吴清文, 陈伟.  成像光谱仪星上光谱定标的数据处理 . 中国光学, 2011, 4(2): 175-181.
    [19] 汪逸群, 颜昌翔, 苗春安.  星载高分辨率超光谱成像仪分光方式的选择 . 中国光学, 2009, 2(4): 304-308.
    [20] 李晓晖, 颜昌翔.  成像光谱仪星上定标技术 . 中国光学, 2009, 2(4): 309-315.
  • 加载中
计量
  • 文章访问数:  1747
  • HTML全文浏览量:  53
  • PDF下载量:  863
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-09-16
  • 修回日期:  2012-11-12
  • 刊出日期:  2012-12-10

超高分辨率光谱定标技术发展概况

doi: 10.3788/CO.20120506.0566
    基金项目:

    国家863高技术研究发展计划资助项目(No.2011AA12A102)

    通讯作者: 郑玉权
  • 中图分类号: TP722.5; X831

摘要: 介绍了高光谱分辨率光谱定标经常采用的几种技术手段,包括谱线灯法、单色准直光法、利用可调谐激光器和气体吸收池的方法等。通过对比几种国外高光谱分辨率大气痕量气体探测仪的光谱定标技术,阐述了不同光谱定标技术的原理、实施方法以及技术特点。针对大气痕量气体探测遥感器超高分辨率光谱定标的特点,指出定标设备的带宽应能达到0.001 nm的水平,同时还应考虑采取优化定标算法、结合多种光谱定标方法等措施来满足高光谱分辨率大气痕量气体探测仪光谱定标的要求。

English Abstract

刘倩倩, 郑玉权. 超高分辨率光谱定标技术发展概况[J]. 中国光学, 2012, 5(6): 566-577. doi: 10.3788/CO.20120506.0566
引用本文: 刘倩倩, 郑玉权. 超高分辨率光谱定标技术发展概况[J]. 中国光学, 2012, 5(6): 566-577. doi: 10.3788/CO.20120506.0566
LIU Qian-qian, ZHENG Yu-quan. Development of spectral calibration technologies with ultra-high resolutions[J]. Chinese Optics, 2012, 5(6): 566-577. doi: 10.3788/CO.20120506.0566
Citation: LIU Qian-qian, ZHENG Yu-quan. Development of spectral calibration technologies with ultra-high resolutions[J]. Chinese Optics, 2012, 5(6): 566-577. doi: 10.3788/CO.20120506.0566
参考文献 (1)

目录

    /

    返回文章
    返回