留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进的固定点图像复原算法

阎雪飞 许廷发 白廷柱

阎雪飞, 许廷发, 白廷柱. 改进的固定点图像复原算法[J]. 中国光学, 2013, 6(3): 318-324. doi: 10.3788/CO.20130603.0318
引用本文: 阎雪飞, 许廷发, 白廷柱. 改进的固定点图像复原算法[J]. 中国光学, 2013, 6(3): 318-324. doi: 10.3788/CO.20130603.0318
YAN Xue-fei, XU Ting-fa, BAI Ting-zhu. Improved fixed point method for image restoration[J]. Chinese Optics, 2013, 6(3): 318-324. doi: 10.3788/CO.20130603.0318
Citation: YAN Xue-fei, XU Ting-fa, BAI Ting-zhu. Improved fixed point method for image restoration[J]. Chinese Optics, 2013, 6(3): 318-324. doi: 10.3788/CO.20130603.0318

改进的固定点图像复原算法

doi: 10.3788/CO.20130603.0318
基金项目: 

Major State Basic Research Development Program of China(973 Program, No.2009CB72400603);The National Natural Science:Scientific Instrumentation Special Project(No.61027002);The National Natural Science Foundation of China(No.60972100)

详细信息
    通讯作者:

    许廷发

  • 中图分类号: TP391.4

Improved fixed point method for image restoration

More Information
    Author Bio:

    YAN Xue-fei(1979-), male, PhD student. He received his B.S. degree in electronics engineering from Shanxi University in 2002, and received his M.S. degree in Optical Engineering from Beijing Institute of Technology in 2007. His research interests include image deblurring. E-mail:yxfamyself@sina.com

  • 摘要: 研究了周期边界条件下,Tikhonov正则化的固定点算法,提出了变化正则化参数的方法。首先对正则化参数取较大值,抑制复原图像中的噪声,通过得出的收敛结果来修正初始梯度;然后对正则化参数取较小值,以增强复原图像中的细节。实验结果表明,与当前求解L1范数正则化函数和全变分正则化函数的流行算法比较,本文算法对于运动模糊与高斯模糊图像的复原效果更佳。
  • [1] HANSEN P C,NAGY J G,DEBLURRING D P. Images:Matrices, Spectra, and Filtering[M]. Philadelphia:SIAM, Society for Industrial and Applied Mathematics,2006. [2] DAUBECHIES I,FRIESE M D,MOL C D. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications in Pure and Applied Mathematics,2004,57:1413-1457. [3] ELAD M,MATALON B,ZIBULEVSKY M. Image denoising with shrinkage and redundant representations[C]//Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,CVPR″2006,New York,2006,2:1924-1931. [4] FIGUEIREDO M,BIOUCAS-DIAS J,NOWAK R. Majorization minimization algorithms for wavelet-based image restoration[J]. IEEE T. Image Process.,2007,16(12):2980-2991. [5] FIGUEIREDO M,NOWAK R. An EM algorithm for wavelet-based image restoration[J]. IEEE T. Image Process.,2003,12:906-916. [6] FIGUEIREDO M,NOWAK R. A bound optimization approach to wavelet-based image deconvolution[C]//Proc. of the IEEE International Conference on Image Processing, ICIP'2005,Genoa,Italy,2005,2:782. [7] RUDIN L,OSHER S,FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Phys. D,1992,60(1-4):259-268. [8] RUDIN L,OSHER S. Total variation based image restoration with free local constraints[C]//Proc. of the IEEE International Conference on Image Processing,ICIP,1994,1:31-35. [9] CHAMBOLLE A. An algorithm for total variation minimizationand applications[J]. J. Math. Imaging Vis.,2004,20:89-97. [10] CHAN T,ESEDOGLU S,PARK F,et al.. Recent developments in total variation image restoration:Handbook of Mathematical Models in Computer Vision[M]. New York:Springer Verlag,2005. [11] FIGUEIREDO M A T,NOWAK R D,WRIGHT S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE J. Selected Topics in Signal Processing,2007:586-597. [12] WRIGHT S J,NOWAK R D,FIGUEIREDO M A T. Sparse reconstruction by separable approximation[J]. IEEE T. Signal Process.,2009,57(7):2479-2493. [13] BIOUCAS-DIAS J,FIGUEIREDO M. A new TwIST:two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE T. Image Process.,2007,16(12):2992-3004. [14] BIOUCAS-DIAS J,FIGUEIREDO M. Two-step algorithms for linear inverse problems with non-quadratic regularization[C]//IEEE International Conference on Image Processing-ICIP'2007,Sept.16-Oct.10,2007,San Autonio,TX,2007,1:105-108. [15] AFONSO M V,BIOUCAS-DIAS J M,FIGUEIREDO M A T. Fast image recovery using variable splitting and constrained optimization[J]. IEEE T. Image Process.,2010,19(9):2345-2356. [16] FIGUEIREDO M,BIOUCAS-DIAS J M,AFONSO M V. Fast frame-based image deconvolution using variable splitting and constrained optimization[C]//IEEE Workshop on Statistical Signal Processing-SSP'2009,Aug.31-Sep.03,2009,Cardiff UK,2009. [17] AFONSO M V,BIOUCAS-DIAS J M,FIGUEIREDO M A T. An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems[J]. IEEE T. Image Process.,2011,20(3):681-695. [18] AFONSO M V,BIOUCAS-DIAS J M,FIGUEIREDO M A T. A fast algorithm for the constrained formulation of compressive image reconstruction and other linear inverse problems[C]//IEEE International Conference on Acoustics,Speech, and Signal Processing(ICASSP),Mar.14-19,2010,Dallas,US,2010. [19] WANG Y,YANG J,YIN W,et al.. A new alternating minimization algorithm for total variation image reconstruction[J]. SIAM J. Imaging Sciences,2008,1(3):248-272. [20] YANG J,YIN W,ZHANG Y,et al.. A fast algorithm for edge-preserving variational multichannel image restoration[J]. SIAM J. Imaging Sciences,2009,2(2):569-592. [21] YANG J,ZHANG Y,YIN W. An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise[J]. SIAM J. Sci. Compu.,2009,31(4):2842-2865. [22] TAO M,YANG J,HE B. Alternating direction algorithms for total variation deconvolution in image reconstruction[EB/OL](2009-06-07).[2012-07-11].http://www.optimization-online.org/DB_HTML/2009/11/2463.html. [23] VOGEL C R,OMAN M E. Iterative methods for total variation denoising[J]. SIAM J. Sci. Comput,17(1),227-238,1996. [24] WANG Z,BOVIK A C,SHEIKH H R,et al.. Image quality assessment: from error visibility to structural similarity[J]. IEEE T. Image Process.,2004,13(4):600-612.
  • 加载中
计量
  • 文章访问数:  2216
  • HTML全文浏览量:  96
  • PDF下载量:  657
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-11
  • 修回日期:  2013-04-13
  • 刊出日期:  2013-06-10

目录

    /

    返回文章
    返回