留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改进的固定点图像复原算法

阎雪飞 许廷发 白廷柱

阎雪飞, 许廷发, 白廷柱. 改进的固定点图像复原算法[J]. 中国光学, 2013, 6(3): 318-324. doi: 10.3788/CO.20130603.0318
引用本文: 阎雪飞, 许廷发, 白廷柱. 改进的固定点图像复原算法[J]. 中国光学, 2013, 6(3): 318-324. doi: 10.3788/CO.20130603.0318
YAN Xue-fei, XU Ting-fa, BAI Ting-zhu. Improved fixed point method for image restoration[J]. Chinese Optics, 2013, 6(3): 318-324. doi: 10.3788/CO.20130603.0318
Citation: YAN Xue-fei, XU Ting-fa, BAI Ting-zhu. Improved fixed point method for image restoration[J]. Chinese Optics, 2013, 6(3): 318-324. doi: 10.3788/CO.20130603.0318

改进的固定点图像复原算法

doi: 10.3788/CO.20130603.0318
基金项目: 

Major State Basic Research Development Program of China(973 Program, No.2009CB72400603);The National Natural Science:Scientific Instrumentation Special Project(No.61027002);The National Natural Science Foundation of China(No.60972100)

详细信息
    通讯作者: 许廷发
  • 中图分类号: TP391.4

Improved fixed point method for image restoration

More Information
    Author Bio:

    YAN Xue-fei(1979-), male, PhD student. He received his B.S. degree in electronics engineering from Shanxi University in 2002, and received his M.S. degree in Optical Engineering from Beijing Institute of Technology in 2007. His research interests include image deblurring. E-mail:yxfamyself@sina.com

  • 摘要: 研究了周期边界条件下,Tikhonov正则化的固定点算法,提出了变化正则化参数的方法。首先对正则化参数取较大值,抑制复原图像中的噪声,通过得出的收敛结果来修正初始梯度;然后对正则化参数取较小值,以增强复原图像中的细节。实验结果表明,与当前求解L1范数正则化函数和全变分正则化函数的流行算法比较,本文算法对于运动模糊与高斯模糊图像的复原效果更佳。
  • [1] HANSEN P C,NAGY J G,DEBLURRING D P. Images:Matrices, Spectra, and Filtering[M]. Philadelphia:SIAM, Society for Industrial and Applied Mathematics,2006. [2] DAUBECHIES I,FRIESE M D,MOL C D. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications in Pure and Applied Mathematics,2004,57:1413-1457. [3] ELAD M,MATALON B,ZIBULEVSKY M. Image denoising with shrinkage and redundant representations[C]//Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,CVPR″2006,New York,2006,2:1924-1931. [4] FIGUEIREDO M,BIOUCAS-DIAS J,NOWAK R. Majorization minimization algorithms for wavelet-based image restoration[J]. IEEE T. Image Process.,2007,16(12):2980-2991. [5] FIGUEIREDO M,NOWAK R. An EM algorithm for wavelet-based image restoration[J]. IEEE T. Image Process.,2003,12:906-916. [6] FIGUEIREDO M,NOWAK R. A bound optimization approach to wavelet-based image deconvolution[C]//Proc. of the IEEE International Conference on Image Processing, ICIP'2005,Genoa,Italy,2005,2:782. [7] RUDIN L,OSHER S,FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Phys. D,1992,60(1-4):259-268. [8] RUDIN L,OSHER S. Total variation based image restoration with free local constraints[C]//Proc. of the IEEE International Conference on Image Processing,ICIP,1994,1:31-35. [9] CHAMBOLLE A. An algorithm for total variation minimizationand applications[J]. J. Math. Imaging Vis.,2004,20:89-97. [10] CHAN T,ESEDOGLU S,PARK F,et al.. Recent developments in total variation image restoration:Handbook of Mathematical Models in Computer Vision[M]. New York:Springer Verlag,2005. [11] FIGUEIREDO M A T,NOWAK R D,WRIGHT S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE J. Selected Topics in Signal Processing,2007:586-597. [12] WRIGHT S J,NOWAK R D,FIGUEIREDO M A T. Sparse reconstruction by separable approximation[J]. IEEE T. Signal Process.,2009,57(7):2479-2493. [13] BIOUCAS-DIAS J,FIGUEIREDO M. A new TwIST:two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE T. Image Process.,2007,16(12):2992-3004. [14] BIOUCAS-DIAS J,FIGUEIREDO M. Two-step algorithms for linear inverse problems with non-quadratic regularization[C]//IEEE International Conference on Image Processing-ICIP'2007,Sept.16-Oct.10,2007,San Autonio,TX,2007,1:105-108. [15] AFONSO M V,BIOUCAS-DIAS J M,FIGUEIREDO M A T. Fast image recovery using variable splitting and constrained optimization[J]. IEEE T. Image Process.,2010,19(9):2345-2356. [16] FIGUEIREDO M,BIOUCAS-DIAS J M,AFONSO M V. Fast frame-based image deconvolution using variable splitting and constrained optimization[C]//IEEE Workshop on Statistical Signal Processing-SSP'2009,Aug.31-Sep.03,2009,Cardiff UK,2009. [17] AFONSO M V,BIOUCAS-DIAS J M,FIGUEIREDO M A T. An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems[J]. IEEE T. Image Process.,2011,20(3):681-695. [18] AFONSO M V,BIOUCAS-DIAS J M,FIGUEIREDO M A T. A fast algorithm for the constrained formulation of compressive image reconstruction and other linear inverse problems[C]//IEEE International Conference on Acoustics,Speech, and Signal Processing(ICASSP),Mar.14-19,2010,Dallas,US,2010. [19] WANG Y,YANG J,YIN W,et al.. A new alternating minimization algorithm for total variation image reconstruction[J]. SIAM J. Imaging Sciences,2008,1(3):248-272. [20] YANG J,YIN W,ZHANG Y,et al.. A fast algorithm for edge-preserving variational multichannel image restoration[J]. SIAM J. Imaging Sciences,2009,2(2):569-592. [21] YANG J,ZHANG Y,YIN W. An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise[J]. SIAM J. Sci. Compu.,2009,31(4):2842-2865. [22] TAO M,YANG J,HE B. Alternating direction algorithms for total variation deconvolution in image reconstruction[EB/OL](2009-06-07).[2012-07-11].http://www.optimization-online.org/DB_HTML/2009/11/2463.html. [23] VOGEL C R,OMAN M E. Iterative methods for total variation denoising[J]. SIAM J. Sci. Comput,17(1),227-238,1996. [24] WANG Z,BOVIK A C,SHEIKH H R,et al.. Image quality assessment: from error visibility to structural similarity[J]. IEEE T. Image Process.,2004,13(4):600-612.
  • [1] 王丹, 薛彬, 涂浪平, 张友林, 宋军, 屈军乐, 孔祥贵.  钕敏化多层壳纳米结构的增强型染料敏化上转换发光 . 中国光学, 2020, 13(6): 1-9. doi: 10.37188/CO.2020-0097
    [2] 王贤敏, 刘东, 臧仲明, 吴兰, 严天亮, 周宇豪, 张与鹏.  可用于单幅闭合干涉图相位恢复的正则化相位跟随技术 . 中国光学, 2019, 12(4): 719-730. doi: 10.3788/CO.20191204.0719
    [3] 郑云达, 黄玮, 潘云, 徐明飞, 贾树强, 张晓菲, 卢勇男.  简单光学系统的宽光谱点扩散函数估计 . 中国光学, 2019, 12(6): 1418-1430. doi: 10.3788/CO.20191206.1418
    [4] 郑云达, 黄玮, 徐明飞, 潘云, 贾树强, 张晓菲, 卢勇男.  大视场高像质简单光学系统的光学-算法协同设计 . 中国光学, 2019, 12(5): 1090-1099. doi: 10.3788/CO.20191205.1090
    [5] 王军, 何昕, 魏仲慧, 穆治亚, 吕游, 何家维.  基于区域滤波的模糊星图复原方法 . 中国光学, 2019, 12(2): 321-331. doi: 10.3788/CO.20191202.0321
    [6] 谭翠媚, 许廷发, 马旭, 张宇寒, 王茜, 闫歌.  图-谱结合的压缩感知高光谱视频图像复原 . 中国光学, 2018, 11(6): 949-957. doi: 10.3788/CO.20181106.0949
    [7] 安海霞, 邓坤, 闭治跃.  高功率激光装备小型化轻量化技术 . 中国光学, 2017, 10(3): 321-330. doi: 10.3788/CO.20171003.0321
    [8] 杨航, 吴笑天, 王宇庆.  基于结构字典学习的图像复原方法 . 中国光学, 2017, 10(2): 207-218. doi: 10.3788/CO.20171002.0207
    [9] 郝建坤, 黄玮, 刘军, 何阳.  空间变化PSF非盲去卷积图像复原法综述 . 中国光学, 2016, 9(1): 41-50. doi: 10.3788/CO.20160901.0041
    [10] 朱瑞飞, 魏群, 王超, 贾宏光, 吴海龙.  基于随机点扩散函数的多帧湍流退化图像自适应复原方法 . 中国光学, 2015, 8(3): 368-377. doi: 10.3788/CO.20150803.0368
    [11] 王红, 田铁印.  5倍变焦距光学系统小型化设计 . 中国光学, 2014, 7(2): 315-319. doi: 10.3788/CO.20140702.0315
    [12] 王杨, 卢嘉, 韩力英, 贺永洁.  基于波前像差的个性化人工晶体设计 . 中国光学, 2014, 7(5): 837-843. doi: 10.3788/CO.20140705.0837
    [13] 曹雷, 陈洪斌, 邱琪, 张建林, 任戈, 徐智勇, 张彬.  盲图像复原研究现状 . 中国光学, 2014, 7(1): 68-78. doi: 10.3788/CO.20140701.068
    [14] 孙宏海, 刘艳滢.  改进的盲解卷积技术在远距离激光光斑图像复原中的应用 . 中国光学, 2013, 6(6): 868-875. doi: 10.3788/CO.20130606.868
    [15] 朱明, 杨航, 贺柏根, 鲁剑锋.  联合梯度预测与导引滤波的图像运动模糊复原 . 中国光学, 2013, 6(6): 850-855. doi: 10.3788/CO.20130606.850
    [16] 曹海霞, 巴音贺希格, 崔继承, 张永超.  基于图像复原的高光谱图像前向像移补偿 . 中国光学, 2013, 6(6): 856-862. doi: 10.3788/CO.20130606.856
    [17] 吴笑天, 鲁剑锋, 贺柏根, 吴川, 朱明.  雾天降质图像的快速复原 . 中国光学, 2013, 6(6): 892-899. doi: 10.3788/CO.20130606.892
    [18] 古新安, 朱韦臻, 罗志伟, ANDREEV Y M, LANSKII G V, SHAIDUKO A V, IZAAK T I, SVETLICHNYI V A, VAYTULEVICH E A, ZUEV V V.  掺碲硒化镓晶体的光学性能 . 中国光学, 2011, 4(6): 660-666.
    [19] 宋建中.  图像处理智能化的发展趋势 . 中国光学, 2011, 4(5): 431-440.
    [20] 罗潇, 孙海江, 陈秋萍, 陈静, 王延杰.  Bayer格式图像的实时彩色复原 . 中国光学, 2010, 3(2): 182-187.
  • 加载中
计量
  • 文章访问数:  2107
  • HTML全文浏览量:  72
  • PDF下载量:  657
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-11
  • 修回日期:  2013-04-13
  • 刊出日期:  2013-06-10

改进的固定点图像复原算法

doi: 10.3788/CO.20130603.0318
    基金项目:

    Major State Basic Research Development Program of China(973 Program, No.2009CB72400603);The National Natural Science:Scientific Instrumentation Special Project(No.61027002);The National Natural Science Foundation of China(No.60972100)

    通讯作者: 许廷发
  • 中图分类号: TP391.4

摘要: 研究了周期边界条件下,Tikhonov正则化的固定点算法,提出了变化正则化参数的方法。首先对正则化参数取较大值,抑制复原图像中的噪声,通过得出的收敛结果来修正初始梯度;然后对正则化参数取较小值,以增强复原图像中的细节。实验结果表明,与当前求解L1范数正则化函数和全变分正则化函数的流行算法比较,本文算法对于运动模糊与高斯模糊图像的复原效果更佳。

English Abstract

阎雪飞, 许廷发, 白廷柱. 改进的固定点图像复原算法[J]. 中国光学, 2013, 6(3): 318-324. doi: 10.3788/CO.20130603.0318
引用本文: 阎雪飞, 许廷发, 白廷柱. 改进的固定点图像复原算法[J]. 中国光学, 2013, 6(3): 318-324. doi: 10.3788/CO.20130603.0318
YAN Xue-fei, XU Ting-fa, BAI Ting-zhu. Improved fixed point method for image restoration[J]. Chinese Optics, 2013, 6(3): 318-324. doi: 10.3788/CO.20130603.0318
Citation: YAN Xue-fei, XU Ting-fa, BAI Ting-zhu. Improved fixed point method for image restoration[J]. Chinese Optics, 2013, 6(3): 318-324. doi: 10.3788/CO.20130603.0318
参考文献 (1)

目录

    /

    返回文章
    返回