Overview and outlook of monolithic primary mirror of spaceborne telescope with 3.5 m aperture
-
摘要: 主反射镜的口径大小与结构形式在极大程度上决定了空间望远镜的技术难度与经济成本。为了实现更高的空间分辨率与更强的信息收集能力,各国研制的空间望远镜主反射镜的口径朝着越来越大的趋势发展,从哈勃空间望远镜(HST)的2.4 m,到新世界观测者空间望远镜(NWO)的4 m,甚至到先进技术大口径空间望远镜(ATLAST)的8 m,无不体现了对超大口径空间观测能力的追求。而单块式主镜凭借其支撑技术的可靠性与经济性,正成为超大口径空间望远镜的首选。通过对国外研制的超大口径空间望远镜的论述与分析,探讨了目前空间望远镜中超大口径主反射镜的关键技术与发展方向。针对目前国内运载能力与光学制造加工能力的极限,提出了建造基于3.5 m口径主镜的空间望远镜设想。Abstract: The aperture and structural configuration extremely determine the technical difficulty and economic cost of a spaceborne telescope. In order to realize higher spatial resolution and capacity of acquisition of information, the aperture of primary mirror of space telescope abroad is getting larger and larger. From the 2.4 m aperture of the Hubble Space Telescope(HST), to the 4 m aperture of the New World Observer(NWO), up until to the 8-m aperture of the Advanced Technology Large Aperture Space Telescope(ATLAST), all without exception embodies pursuing the high capacity of ultra-large aperture observation. Monolithic primary mirror is becoming the first choice of ultra-large aperture space telescope by right of its technical reliability and economical efficiency. Through analysis and discussion on developing ultra-large aperture space telescopes abroad, the key techniques and trend of development of ultra-large aperture primary mirror are investigated. Then we proposed the assumption to build a 3.5 m aperture space telescope with a monolithic primary mirror based on the state-of-art capacity of lunching and optical fabrication in China.
-
Key words:
- space telescope /
- primary mirror /
- ultra large aperture /
- monolithic /
- mirror support
-
[1] STAHL H P. Optic needs for future space telescopes[J]. SPIE,2003,5180:1-5.
[2] STAHL H P. Development of lightweight mirror technology for the next generation space telescope[J]. SPIE,2001,4451:1-4.
[3] EGERMAN R,MATTHEWS G,WYNN J. The current and future state-of-the-art glass optics for space-based astronomical observatories[R]. US: ITT Corporation.
[4] KENDRICK S,STAHL H P. Large aperture space telescope mirror fabrication trades[J]. SPIE,2008,7010:70102G.
[5] STAHL H P. JWST mirror technology development results[J]. SPIE,2007,6671:667102.
[6] KENDRICK S. Monolithic versus segmented primary mirror concepts for space telescopes[J]. SPIE,2009,7426:74260O.
[7] NEIN M E,LAWRENCE J F. Monolithic vs. deployable primary mirror trade considerations for the next generation space telescope[R]. US:NASA,2002.
[8] CASTEL D,SEIN E,LOPEZ S,et al.. The 3.2 m all SiC telescope for SPICA[J]. SPIE,2012,8450:84502P.
[9] KANEDA H,NAKAGAWA T,ENYA K,et al.. Optical testing activities for the SPICA telescope[J]. SPIE,2010,7731:77310V.
[10] BORUCKI W J,KOCH D G,LISSAUERA J,et al.. The kepler mission:a wide field of view photometer designed to determine the frequency of earth-size planets around solar-like stars[J]. SPIE,2003,4854:129-140.
[11] KOCH D,BORUCKI W,DUNHAM E. Overview and status of the Kepler Mission[J]. SPIE,2004,5487:1491-1500.
[12] LAMPTON M,SHOLL M,KRIM M. SNAP telescope: an update[J]. SPIE,2004,5166:113-123.
[13] BESUNER R W,CHOW K P,KENDRICK S E. Selective reinforcement of a 2m-class lightweight mirror for horizontal beam optical testing[J]. SPIE,2008,7018:701816.
[14] STAHL H P. JWST primary mirror technology development lessons learned[J]. SPIE,2010,7796:779604.
[15] ALLEN L,ANGEL R,MANGUS J D,et al.. The hubble space telescope optical systems failure report[R]. US:NASA,1990.
[16] FEINBERG L D,GEITHNER P H. Applying HST lessons learned to JWST[J]. SPIE,2008,7010:70100N.
[17] YODER J P R. Opto-Mechanical Systems Design[M]. 3rd ed. US:SPIE Press,2006.
[18] BITTNER H,ERDMANN M,HABERLER P. SOFIA primary mirror assembly:structural properties and optical performance[J]. SPIE,2003,4857:266-273.
[19] CASEY S C. The SOFIA program:astronomers return to the stratosphere[J]. SPIE,2006,6267:62670Q.
[20] KEAS P,BREWSTER R,GUERRA J. SOFIA Telescope modal survey test and test-model correlation[J]. SPIE,2010,7738:77380K.
[21] KAERCHER J,EISENTRAEGER P,S M. Mechanical principles of large mirror supports[J]. SPIE,2010,7733:77332O.
[22] BOUGOIN M,LAVENAC J. From HERSCHEL to GAIA,3-meter class SiC space optics[J]. SPIE,2011,8126:81260V.
[23] TOULEMONT Y,PASSVOGEL T,PILLBRAT G. The 3,5m all SiC telescope for HERSCHEL[J]. SPIE,2004,5487:1119-1128.
[24] WEST S C,BAILEY S H,BAUMAN S. A space imaging concept based on a 4 m structured spun-cast borosilicate monolithic primary mirror[J]. SPIE,2010,7731:77311O.
[25] MARC P. Science with an 8-meter to 16-meter optical/UV space telescope[J]. SPIE,2008,7010:701021.
[26] STAHL H P. Design study of 8 meter monolithic mirror UV/optical space telescope[J]. SPIE,2008,7010:701022.
[27] WILLIAM R O,FEINBERG L D,PURVES L R. ATLAST-9.2 m:a large-aperture deployable space telescope[J]. SPIE,2010,7731:77312M.
[28] ARGABRIGHT V,ARNOLD B,ARONSTEIN D. Advanced Technology Large-Aperture Space Telescope(ATLAST): a technology roadmap for the next decade[R]. US:NASA,2009.
[29] HYDE T,POSTMAN M. Technology development project plan for the Advanced Technology Large Aperture Space Telescope(ATLAST), a roadmap for UVIOR Technology, 2010-2020[R]. US:NASA,2009.
[30] THORSTEN D,PETER H,RALF J. Status of Zerodur mirror blank production at Schott[J]. SPIE,2005,5869:5869O2.
[31] HULL T,HARTMANN P,R CLARKSON A. Lightweight high-performance 1-4 meter class spaceborne mirrors:emerging technology for demanding spaceborne requirements[J]. SPIE,2010,7739:77390C.
[32] HULL T,WESTERHOFF T,PEPI J W. Game-changing approaches to affordable advanced lightweight mirrors Ⅱ:new cases analyzed for extreme ZERODUR lightweighting and relief from the classical polishing parameter constraint[J]. SPIE,2012,8450:845050.
[33] SCOTT S W,STAHL H P. Overview of mirror technology development for large lightweight space-based optical systems[J]. SPIE,2001,4198:1-5.
[34] 张舸. 1.5 m量级SiC陶瓷素坯凝胶注模成型工艺[J]. 光学精密工程,2013,21(12):2989-2993. ZHANG G. Gelcasting process of 1.5 m SiC ceramic green body[J]. Opt. Precision Eng.,2013,21(12):2989-2993.(in Chinese)
[35] 徐宏,关英俊. 空间相机1 m口径反射镜组件结构设计[J]. 光学精密工程,2013,21(6):1488-1495. XU H,GUAN Y J. Structural design of 1 m diameter space mirror component of space camera[J]. Opt. Precision Eng.,2013,21(6):1488-1495.(in Chinese)
[36] 刘巨,董得义,辛宏伟. 大口径反射镜组件的温度适应性[J]. 光学精密工程,2013,21(12):3169-3175. LIU J,DONG D Y,XIN H W. Temperature adaptation of large aperture mirror assembly[J]. Opt. Precision Eng.,2013,21(12):3169-3175.(in Chinese)
计量
- 文章访问数: 1680
- HTML全文浏览量: 282
- PDF下载量: 877
- 被引次数: 0