留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

3.5 m口径空间望远镜单块式主镜技术展望

李宗轩 金光 张雷 孔林

李宗轩, 金光, 张雷, 孔林. 3.5 m口径空间望远镜单块式主镜技术展望[J]. 中国光学, 2014, 7(4): 532-541. doi: 10.3788/CO.20140704.0532
引用本文: 李宗轩, 金光, 张雷, 孔林. 3.5 m口径空间望远镜单块式主镜技术展望[J]. 中国光学, 2014, 7(4): 532-541. doi: 10.3788/CO.20140704.0532
LI Zong-xuan, JIN Guang, ZHANG Lei, KONG Lin. Overview and outlook of monolithic primary mirror of spaceborne telescope with 3.5 m aperture[J]. Chinese Optics, 2014, 7(4): 532-541. doi: 10.3788/CO.20140704.0532
Citation: LI Zong-xuan, JIN Guang, ZHANG Lei, KONG Lin. Overview and outlook of monolithic primary mirror of spaceborne telescope with 3.5 m aperture[J]. Chinese Optics, 2014, 7(4): 532-541. doi: 10.3788/CO.20140704.0532

3.5 m口径空间望远镜单块式主镜技术展望

doi: 10.3788/CO.20140704.0532
基金项目: 

国家高技术研究发展计划(863计划)资助项目(No.2012AA121502)

详细信息
    作者简介:

    张雷(1982-),男,山东菏泽人,副研究员,2008年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事光学仪器设计与分析方面的研究。E-mail:zhangleisong@tom.com

    通讯作者: 李宗轩
  • 中图分类号: TH751.1;V474.2

Overview and outlook of monolithic primary mirror of spaceborne telescope with 3.5 m aperture

  • 摘要: 主反射镜的口径大小与结构形式在极大程度上决定了空间望远镜的技术难度与经济成本。为了实现更高的空间分辨率与更强的信息收集能力,各国研制的空间望远镜主反射镜的口径朝着越来越大的趋势发展,从哈勃空间望远镜(HST)的2.4 m,到新世界观测者空间望远镜(NWO)的4 m,甚至到先进技术大口径空间望远镜(ATLAST)的8 m,无不体现了对超大口径空间观测能力的追求。而单块式主镜凭借其支撑技术的可靠性与经济性,正成为超大口径空间望远镜的首选。通过对国外研制的超大口径空间望远镜的论述与分析,探讨了目前空间望远镜中超大口径主反射镜的关键技术与发展方向。针对目前国内运载能力与光学制造加工能力的极限,提出了建造基于3.5 m口径主镜的空间望远镜设想。
  • [1]

    [1] STAHL H P. Optic needs for future space telescopes[J]. SPIE,2003,5180:1-5.
    [2] STAHL H P. Development of lightweight mirror technology for the next generation space telescope[J]. SPIE,2001,4451:1-4.
    [3] EGERMAN R,MATTHEWS G,WYNN J. The current and future state-of-the-art glass optics for space-based astronomical observatories[R]. US: ITT Corporation.
    [4] KENDRICK S,STAHL H P. Large aperture space telescope mirror fabrication trades[J]. SPIE,2008,7010:70102G.
    [5] STAHL H P. JWST mirror technology development results[J]. SPIE,2007,6671:667102.
    [6] KENDRICK S. Monolithic versus segmented primary mirror concepts for space telescopes[J]. SPIE,2009,7426:74260O.
    [7] NEIN M E,LAWRENCE J F. Monolithic vs. deployable primary mirror trade considerations for the next generation space telescope[R]. US:NASA,2002.
    [8] CASTEL D,SEIN E,LOPEZ S,et al.. The 3.2 m all SiC telescope for SPICA[J]. SPIE,2012,8450:84502P.
    [9] KANEDA H,NAKAGAWA T,ENYA K,et al.. Optical testing activities for the SPICA telescope[J]. SPIE,2010,7731:77310V.
    [10] BORUCKI W J,KOCH D G,LISSAUERA J,et al.. The kepler mission:a wide field of view photometer designed to determine the frequency of earth-size planets around solar-like stars[J]. SPIE,2003,4854:129-140.
    [11] KOCH D,BORUCKI W,DUNHAM E. Overview and status of the Kepler Mission[J]. SPIE,2004,5487:1491-1500.
    [12] LAMPTON M,SHOLL M,KRIM M. SNAP telescope: an update[J]. SPIE,2004,5166:113-123.
    [13] BESUNER R W,CHOW K P,KENDRICK S E. Selective reinforcement of a 2m-class lightweight mirror for horizontal beam optical testing[J]. SPIE,2008,7018:701816.
    [14] STAHL H P. JWST primary mirror technology development lessons learned[J]. SPIE,2010,7796:779604.
    [15] ALLEN L,ANGEL R,MANGUS J D,et al.. The hubble space telescope optical systems failure report[R]. US:NASA,1990.
    [16] FEINBERG L D,GEITHNER P H. Applying HST lessons learned to JWST[J]. SPIE,2008,7010:70100N.
    [17] YODER J P R. Opto-Mechanical Systems Design[M]. 3rd ed. US:SPIE Press,2006.
    [18] BITTNER H,ERDMANN M,HABERLER P. SOFIA primary mirror assembly:structural properties and optical performance[J]. SPIE,2003,4857:266-273.
    [19] CASEY S C. The SOFIA program:astronomers return to the stratosphere[J]. SPIE,2006,6267:62670Q.
    [20] KEAS P,BREWSTER R,GUERRA J. SOFIA Telescope modal survey test and test-model correlation[J]. SPIE,2010,7738:77380K.
    [21] KAERCHER J,EISENTRAEGER P,S M. Mechanical principles of large mirror supports[J]. SPIE,2010,7733:77332O.
    [22] BOUGOIN M,LAVENAC J. From HERSCHEL to GAIA,3-meter class SiC space optics[J]. SPIE,2011,8126:81260V.
    [23] TOULEMONT Y,PASSVOGEL T,PILLBRAT G. The 3,5m all SiC telescope for HERSCHEL[J]. SPIE,2004,5487:1119-1128.
    [24] WEST S C,BAILEY S H,BAUMAN S. A space imaging concept based on a 4 m structured spun-cast borosilicate monolithic primary mirror[J]. SPIE,2010,7731:77311O.
    [25] MARC P. Science with an 8-meter to 16-meter optical/UV space telescope[J]. SPIE,2008,7010:701021.
    [26] STAHL H P. Design study of 8 meter monolithic mirror UV/optical space telescope[J]. SPIE,2008,7010:701022.
    [27] WILLIAM R O,FEINBERG L D,PURVES L R. ATLAST-9.2 m:a large-aperture deployable space telescope[J]. SPIE,2010,7731:77312M.
    [28] ARGABRIGHT V,ARNOLD B,ARONSTEIN D. Advanced Technology Large-Aperture Space Telescope(ATLAST): a technology roadmap for the next decade[R]. US:NASA,2009.
    [29] HYDE T,POSTMAN M. Technology development project plan for the Advanced Technology Large Aperture Space Telescope(ATLAST), a roadmap for UVIOR Technology, 2010-2020[R]. US:NASA,2009.
    [30] THORSTEN D,PETER H,RALF J. Status of Zerodur mirror blank production at Schott[J]. SPIE,2005,5869:5869O2.
    [31] HULL T,HARTMANN P,R CLARKSON A. Lightweight high-performance 1-4 meter class spaceborne mirrors:emerging technology for demanding spaceborne requirements[J]. SPIE,2010,7739:77390C.
    [32] HULL T,WESTERHOFF T,PEPI J W. Game-changing approaches to affordable advanced lightweight mirrors Ⅱ:new cases analyzed for extreme ZERODUR lightweighting and relief from the classical polishing parameter constraint[J]. SPIE,2012,8450:845050.
    [33] SCOTT S W,STAHL H P. Overview of mirror technology development for large lightweight space-based optical systems[J]. SPIE,2001,4198:1-5.
    [34] 张舸. 1.5 m量级SiC陶瓷素坯凝胶注模成型工艺[J]. 光学精密工程,2013,21(12):2989-2993. ZHANG G. Gelcasting process of 1.5 m SiC ceramic green body[J]. Opt. Precision Eng.,2013,21(12):2989-2993.(in Chinese)
    [35] 徐宏,关英俊. 空间相机1 m口径反射镜组件结构设计[J]. 光学精密工程,2013,21(6):1488-1495. XU H,GUAN Y J. Structural design of 1 m diameter space mirror component of space camera[J]. Opt. Precision Eng.,2013,21(6):1488-1495.(in Chinese)
    [36] 刘巨,董得义,辛宏伟. 大口径反射镜组件的温度适应性[J]. 光学精密工程,2013,21(12):3169-3175. LIU J,DONG D Y,XIN H W. Temperature adaptation of large aperture mirror assembly[J]. Opt. Precision Eng.,2013,21(12):3169-3175.(in Chinese)

  • [1] 赵维, 刘华, 陆子凤, 卢振武, 王新.  大口径衍射望远系统初始结构研究 . 中国光学, 2019, 12(6): 1395-1402. doi: 10.3788/CO.20191206.1395
    [2] 赵天骄, 乔彦峰, 孙宁, 谢军.  经纬仪主镜在支撑系统下的面形变化 . 中国光学, 2017, 10(4): 477-483. doi: 10.3788/CO.20171004.0477
    [3] 李正炜, 王建立, 吴元昊, 王国聪, 刘帅.  基于单站地基望远镜的空间目标姿态估计方法 . 中国光学, 2016, 9(3): 371-378. doi: 10.3788/CO.20160903.0371
    [4] 孙梦至, 王彤彤, 王延超, 刘震, 刘海, 王笑夷, 杨海贵, 高劲松.  大口径反射镜高反射膜研究进展 . 中国光学, 2016, 9(2): 203-212. doi: 10.3788/CO.20160902.0203
    [5] 陶小平.  大口径反射镜加工机床在线检测高精度对准方法 . 中国光学, 2015, 8(6): 1027-1034. doi: 10.3788/CO.20150806.1027
    [6] 赵汝成, 包建勋.  大口径轻质SiC反射镜的研究与应用 . 中国光学, 2014, 7(4): 552-558. doi: 10.3788/CO.20140704.0552
    [7] 陈宝刚, 明名, 吕天宇.  大口径球面反射镜曲率半径的精确测量 . 中国光学, 2014, 7(1): 163-168. doi: 10.3788/CO.20140701.0163
    [8] 石磊, 许永森, 刘福贺.  光电系统中铍反射镜的发展与应用 . 中国光学, 2014, 7(5): 749-758. doi: 10.3788/CO.20140705.0749
    [9] 曹小涛, 孙天宇, 赵运隆, 王栋, 郭权锋.  空间大口径望远镜稳像系统发展现状及趋势 . 中国光学, 2014, 7(5): 739-748. doi: 10.3788/CO.20140705.0739
    [10] 叶伟楠, 董吉洪.  大口径主镜轻量化结构参数的优化设计 . 中国光学, 2012, 5(3): 222-228. doi: 10.3788/CO.20120503.0222
    [11] 陈伟, 丁亚林, 惠守文, 许永森.  碳化硅扫描反射镜支撑结构设计 . 中国光学, 2012, 5(2): 161-166. doi: 10.3788/CO.20120502.0161
    [12] 张景旭.  地基大口径望远镜系统结构技术综述 . 中国光学, 2012, 5(4): 327-336. doi: 10.3788/CO.20120504.0327
    [13] 董吉洪, 王克军, 李延春, 王海萍.  空间遥感器中大口径SiC主镜的轻量化设计 . 中国光学, 2011, 4(2): 118-123.
    [14] 刘秀敏, 何 斌, 沙 巍, 张星祥, 孙 斌, 任建岳.  空间相机主反射镜的拓扑优化设计 . 中国光学, 2010, 3(3): 239-244.
    [15] 韩昌元.  近代高分辨地球成像商业卫星 . 中国光学, 2010, 3(3): 201-208.
    [16] 辛雪军, 陈长征, 张星祥, 许艳军, 任建岳.  平行光管主反射镜组件的非线性有限元分析 . 中国光学, 2010, 3(2): 170-176.
    [17] 孙宁.  1 m口径主反射镜支撑系统的优化设计 . 中国光学, 2010, 3(6): 644-648.
    [18] 张 鹏, 金 光, 石广丰, 齐迎春, 孙小伟, .  空间薄膜反射镜的研究发展现状 . 中国光学, 2009, 2(2): 91-101.
    [19] 李创, 王炜, 樊学武.  基于带状弹簧的空间望远镜精密展开技术进展 . 中国光学, 2009, 2(2): 85-90.
    [20] 任百川, 钟 兴, 金 光.  采用负折射率材料提高空间望远镜分辨率的理论研究 . 中国光学, 2009, 2(3): 184-189.
  • 加载中
计量
  • 文章访问数:  439
  • HTML全文浏览量:  46
  • PDF下载量:  802
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-21
  • 修回日期:  2014-04-23
  • 刊出日期:  2014-07-25

3.5 m口径空间望远镜单块式主镜技术展望

doi: 10.3788/CO.20140704.0532
    基金项目:

    国家高技术研究发展计划(863计划)资助项目(No.2012AA121502)

    作者简介:

    张雷(1982-),男,山东菏泽人,副研究员,2008年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事光学仪器设计与分析方面的研究。E-mail:zhangleisong@tom.com

    通讯作者: 李宗轩
  • 中图分类号: TH751.1;V474.2

摘要: 主反射镜的口径大小与结构形式在极大程度上决定了空间望远镜的技术难度与经济成本。为了实现更高的空间分辨率与更强的信息收集能力,各国研制的空间望远镜主反射镜的口径朝着越来越大的趋势发展,从哈勃空间望远镜(HST)的2.4 m,到新世界观测者空间望远镜(NWO)的4 m,甚至到先进技术大口径空间望远镜(ATLAST)的8 m,无不体现了对超大口径空间观测能力的追求。而单块式主镜凭借其支撑技术的可靠性与经济性,正成为超大口径空间望远镜的首选。通过对国外研制的超大口径空间望远镜的论述与分析,探讨了目前空间望远镜中超大口径主反射镜的关键技术与发展方向。针对目前国内运载能力与光学制造加工能力的极限,提出了建造基于3.5 m口径主镜的空间望远镜设想。

English Abstract

李宗轩, 金光, 张雷, 孔林. 3.5 m口径空间望远镜单块式主镜技术展望[J]. 中国光学, 2014, 7(4): 532-541. doi: 10.3788/CO.20140704.0532
引用本文: 李宗轩, 金光, 张雷, 孔林. 3.5 m口径空间望远镜单块式主镜技术展望[J]. 中国光学, 2014, 7(4): 532-541. doi: 10.3788/CO.20140704.0532
LI Zong-xuan, JIN Guang, ZHANG Lei, KONG Lin. Overview and outlook of monolithic primary mirror of spaceborne telescope with 3.5 m aperture[J]. Chinese Optics, 2014, 7(4): 532-541. doi: 10.3788/CO.20140704.0532
Citation: LI Zong-xuan, JIN Guang, ZHANG Lei, KONG Lin. Overview and outlook of monolithic primary mirror of spaceborne telescope with 3.5 m aperture[J]. Chinese Optics, 2014, 7(4): 532-541. doi: 10.3788/CO.20140704.0532
参考文献 (1)

目录

    /

    返回文章
    返回