Surface plasmon waveguide and its applications
-
摘要: 本文在介绍表面等离子波导基本理论的基础上,主要对表面等离子波导的若干应用进行综述, 包括基于表面等离子波导实现的光学和微波频段的慢波效应、类电磁感应透明现象、可调滤波器,以及通过对电磁波绕射而实现的隐身效应等。最后指出该领域存在的问题与挑战, 并对今后的发展趋势进行了展望。分析认为,通过引入增益介质、采用超导材料等方法降低表面等离子波导材料的损耗、减少工艺制作的难度是今后亟待解决的问题。Abstract: On the basis of Surface Plasmon Polariton(SPP) waveguide dispersion relation being derived systemically, the applications of SPP waveguide are summarized in this paper. The slow wave effect in SPP waveguide, the EIT(electromagnetically induced transparency)-like phenomenon, the tunable SPP waveguide filter at optical and microwave frequencies, the SPP waves cloaking through diffraction are mainly introduced. Problems and challenges in this field are pointed out finally, and the future developing trend is prospected. Analysis indicates that reducing the loss of the surface plasmon waveguide materials and the difficulty of the production process by introducing gain mediums and superconducting materials are the problem to be solved urgently in the future.
-
Key words:
- surface plasmon waveguide /
- metamaterials /
- slow wave effect
-
图 2 (a)基于二维微带传输线构建的MNG/DPS/MNG表面等离子波导; (b)改变单元电容(即MNG材料的有效磁导率),该波导内的表面等离子在不同的截止频率均为慢波; (c)在固定频率(f=1.3 GHz)点,表面等离子波群速度vg和相速度vp随单元电容值(即MNG材料的有效磁导率)的变化趋势 [24]
Figure 2. (a)MNG/DPS/MNG Spps waveguide based on two dimensional microstrip lines; (b)the SPP waves propagate slowly at different cutoff frequency while the unit capacitor (the effective permeability of MNG metamaterials) is changed; (c)the group velocity vg and phase velocity vp change with the unit capacitor[24]
图 4 (a)金属/介质/金属表面等离子波导结构以及EIT透射谱(L1=600 nm,L2=610 nm (实线),L2=620 nm(点线),L2=630 nm(虚线)); (b)相位折射率与波长的变化关系(L1=300 nm,L2=310 nm(实线);L1=600 nm,L2=610 nm(点线))[33]
Figure 4. (a)Metal/dielectric/metal SPPs waveguide structure and EIT transmission spectrum(L1=600 nm,L2=610 nm(solid line),L2=620 nm(dotted line),L2=630 nm(dashed line)); (b)relationship between phase index and wave length(L1=300 nm,L2=310 nm(solid line); L1=600 nm,L2=610 nm(dotted line))[33]
图 5 (a)含缺陷的MNG/DPS/MNG表面等离子通道模型; (b)基于二维微带传输线的MNG/DPS/MNG表面等离子缺陷通道; (c)仿真(实线)和测量(虚线)得到的透射谱; (d)含缺陷的MNG/DPS/MNG表面等离子通道电场分布(f=0.55 GHz)[34]
Figure 5. (a)MNG/DPS/MNG Spps channel with defects; (b)defected MNG/DPS/MNG Spps channel based on two dimensional microstrip; (c)simulated(solid line) and measured(dotted line) transmission spectrum; (d)the distribution of electric field in defected MNG/DPS/MNG Spps channel[34]
图 6 (a)含Fabry-Perot谐振腔的金属/介质/金属表面等离子波导滤波器结构示意图; (b)滤波器透射谱(w1 =w2=50 nm,g=10 nm); (c)波导透射谱(w1=w2=50 nm,L=500 nm)[43]
Figure 6. (a)Metal/dielectric/metal SPPs waveguide filter with Fabry-Perot resonator; (b)the transmission spectrum(w1=w2=50 nm,g=10 nm); (c)the transmission spectrum(w1=w2=50 nm,L=500 nm)[43]
图 7 (a)由真空/金/聚甲基丙烯酸甲酯构成的二维特异材料隐身结构,插图为中央区域原子力显微图像; (b)表面等离子波在该结构中的传播,λ=532 nm; (c)该隐身结构中的能流分布[48]
Figure 7. (a)Two dimensional metamaterial cloak based on vacuum/Au/PMMA,the inset is the atomic force microscopic image of central area; (b)SPP waves propagating in this structure,λ=532 nm; (c)the energy flux distribution[48]
-
[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50]