Relationship between performance of stochastic parallel gradient descent algorithm and distribution rule of deformable mirror
-
摘要: 对随机并行梯度下降算法(SPGD)性能与不同变形镜排布规律的关系进行了研究。以采用Roddier方法生成的由52项Zernike像差构成的畸变波前为整形对象,对SPGD算法的收敛速率和整形效果与变形镜排布规律(单元数分别为19、21、32、37、45、60、61、77、91)之间的关系进行了仿真研究。结果表明:从整体分析,随着变形镜单元数逐渐增多,SPGD算法的收敛速率和整形效果均逐渐变差;从局部分析,由于变形镜元胞类型变化和边缘占空比的影响,在渐变规律中产生了局部差异。
-
关键词:
- 波前整形 /
- 随机并行梯度下降算法 /
- 变形镜
Abstract: The relationship between the performance of stochastic parallel gradient descent(SPGD) algorithm and distribution rule of deformable mirror is studied in this paper. The study object is distortion wave-front including 52 order Zernike aberrations created with Roddier method. The simulation research mainly focuses on relationship between convergence rate, shaping effect of SPGD algorithm and distribution rule of deformable mirrors with 19, 21, 32, 37, 45, 60, 61, 77, and 91 units. The results show that from the general analysis, the convergence and shaping effects of SPGD algorithm gradually become worse with actuator number of deformable mirror increases, but from the partial analysis, this trend create local difference due to different cell type and void ratio in the edge of deformable mirror. -
表 1 Jlim、PVlim、RMSlim与不同变形镜单元数N之间的关系
Table 1. Relationship between Jlim,PVlim,RMSlim and different N-unit deformable mirror
N 91 77 61 60 45 37 32 21 19 Jlim=J5000 0.997 6 0.913 6 0.976 4 0.949 4 0.918 0 0.909 0 0.915 0 0.768 4 0.693 2 PVlim 0.168 9λ 0.818 4λ 0.533 7λ 0.754 0λ 0.803 4λ 0.837 2λ 0.733 9λ 1.343 5λ 1.242 8λ RMSlim 0.007 7λ 0.047 9λ 0.024 6λ 0.036 3λ 0.046 6λ 0.049 2λ 0.047 4λ 0.081 7 0.096 3 -
[1] 杨慧珍,李新阳,姜文汉.自适应光学系统几种随机并行优化控制算法比较[J].强激光与粒子束,2008,20(1):11-16.YANG H ZH,LI X Y,JIANG W H. Comparison of several stochastic parallel optimization control algorithms for adaptive optics system[J]. High Power Laser And Particle Beams,2008,20(1):11-16.(in Chinese) [2] VORONTSOV M A,CARHART G W,RICKLIN J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters,1997,22(12):907-909. [3] 杨慧珍,李新阳,姜文汉.自适应光学系统随机并行梯度下降控制算法仿真与分析[J].光学学报,2007,27(8):1355-1360.YANG H ZH,LI X Y,JIANG W H. Simulation and analysis of stochastic parallel gradient descent control algorithm for adaptive optics system[J]. Acta Optica Sinica,2007,27(28):1355-1360.(in Chinese) [4] 陈波,杨慧珍,张金宝,等.点目标成像自适应光学随即并行梯度下降算法性能指标与收敛速度[J].光学学报,2009,29(5):1143-1148.CHEN B,YANG H ZH,ZHANG J B,et al.. Performances index and convergence rate of parallel gradient descent algorithm in adaptive optics of point source[J]. Acta Optica Sinica,2009,29(5):1143-1148.(in Chinese) [5] VORONTSOV M A,CARHART G W. Adaptive optics based on analog parallel stochastic optimization:analysis and experimental demonstration[J]. J. Opt. Soc. Am. A,2000,17(8):1440-1453. [6] 王卫兵,王挺峰,郭劲.自适应光学随机并行梯度下降算法波前整形规律仿真研究[J].中国光学,2014,7(3):411-420.WANG W B,WANG T F,GUO J. Simulation on the law of wave-front shaping with stochastic parallel gradient descent algorithm for adaptive optics[J]. Chinese Optics,2014,7(3):411-420.(in Chinese) [7] 刘磊,郭劲,赵帅,等.随机并行梯度下降算法在激光束整形中的应用[J].中国光学,2014,7(2):260-266.LIU L,GUO J,ZHAO SH,et al.. Application of stochastic parallel gradient descent algorithm in laser beam shaping[J]. Chinese Optics,2014,7(2):260-266.(in Chinese) [8] Roddier N. Atmospheric wavefront simulation using Zernike polynomials[J]. Optical Engineering,1990,29(10):1174-1180. [9] 王燕儒,汪建业,徐鹏,等.近地面大气相干长度值对比实验分析[J].大气与环境光学学报,2010,5(4):263-268.WANG Y R,WANG J Y,XU P,et al.. Comparison of experimental analysis of atmospheric coherence length in surface layer[J]. J. Atmospheric and Environmental Optics,2010,5(4):263-268.(in Chinese)