留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双星光学观测体系的目标定位误差分析

杨虹 张占月 丁文哲 陈峰

杨虹, 张占月, 丁文哲, 陈峰. 双星光学观测体系的目标定位误差分析[J]. 中国光学(中英文), 2016, 9(4): 452-462. doi: 10.3788/CO.20160904.0452
引用本文: 杨虹, 张占月, 丁文哲, 陈峰. 双星光学观测体系的目标定位误差分析[J]. 中国光学(中英文), 2016, 9(4): 452-462. doi: 10.3788/CO.20160904.0452
YANG Hong, ZHANG Zhan-yue, DING Wen-zhe, CHEN Feng. Position error analysis of double satellites optical observation system[J]. Chinese Optics, 2016, 9(4): 452-462. doi: 10.3788/CO.20160904.0452
Citation: YANG Hong, ZHANG Zhan-yue, DING Wen-zhe, CHEN Feng. Position error analysis of double satellites optical observation system[J]. Chinese Optics, 2016, 9(4): 452-462. doi: 10.3788/CO.20160904.0452

双星光学观测体系的目标定位误差分析

doi: 10.3788/CO.20160904.0452
基金项目: 

部委资助项目 

详细信息
    作者简介:

    杨虹(1991-),女,四川绵竹人,硕士研究生,主要从事航天任务分析与设计方面的研究。E-mail:1558513572@qq.com

    通讯作者:

    张占月(1973-),男,河北吴桥人,博士,教授,博士生导师,主要从事航天系统仿真方面的研究。E-mail:zhangzhan-yue@163.com

  • 中图分类号: V443.5

Position error analysis of double satellites optical observation system

More Information
    Corresponding author: E-mail:zhangzhan-yue@163.com
  • 摘要: 为提高双星光学观测体系的定位精度,构建了新型双星光学定位系统。通过对卫星、光电观测平台的建模,构建了地惯系下平台与目标间的观测矢量模型。利用几何定位算法,推导出了地惯系下的目标定位模型与定位误差模型,并利用蒙特卡罗法获得了定位误差分布。在此基础上,引入了小波理论进行误差的优化重构,以提高双星光学观测体系的定位精度。利用测量数据进行仿真,结果表明,引入小波理论对目标定位误差进行降噪重构后,可以使目标定位精度提高30%,为工程上减小目标定位误差提供了新的思路。

     

  • 图 1  双星定位示意图

    Figure 1.  Schematic of double satellites positioning

    图 2  单星观测示意图

    Figure 2.  Schematic of single satellite observation

    图 3  星载光电平台结构

    Figure 3.  Schematic of space borne optical platform

    图 4  透视过程

    Figure 4.  Schematic of perspective process

    图 5  单星观测成像过程

    Figure 5.  Imaging process of single satellite observation

    图 6  目标定位

    Figure 6.  Schematic of target location

    图 7  地惯系下目标定位误差分布

    Figure 7.  Error distribution of target location in the ECI

    图 8  误差分解

    Figure 8.  Error decomposition

    图 9  各层信号统计图

    Figure 9.  Layers of signal statistics

    图 10  误差信号降噪重构图

    Figure 10.  Noise reduction and reconstruction of the error signal

    表  1  误差源

    Table  1.   Error sources

    主系统分系统具体误差
    光学系统空间相机的光轴晃动误差
    空间相机镜头畸变、相机内部安装结构、量化误差及电子器件噪声
    包括像素抖动误差与灰度噪音的特征提取误差、像元分辨率
    观测系统的静误差造成的成像误差
    态指向误差与转动轴系在生产、安装过程中出现的几何误差
    动态稳定误差转动轴系姿态传感器的安装零位误差和数值截断引起的测量误差
    控制系统框架转动误差
    力矩、振动、噪声等因素引起的稳定回路误差
    目标脱靶量误差、目标特性引起的跟踪回路误差
    系统与卫星间的 对准误差安装对准观测系统与载体星在初始安装时,存在的中心方位误差、 方位对准误差和水平调平误差
    位置测量系统卫星在地惯系下的位置测量误差
    卫星的测量误差姿态测量系统卫星姿态角信息测量误差
    轨道测量系统卫星轨道信息测量误差
    其他误差定位算法误差、双星交互信息时延误差等
    下载: 导出CSV

    表  2  双星光学观测体系参数

    Table  2.   Optical observation system parameters of double satellites

    双星轨道参数(iii,ni,eii,Mi)
    i1/(°)Ω1/(°)n1/(circle·day-1) e1ω1/(°)M1/(°)
    98.223 2181.006 214.629 462 700.002 072 1165.867 2196.327 8
    i2/(°)Ω2/(°)n2/(circle·day-1) e2ω2/(°)M2/(°)
    98.749 0199.862 414.261 080 060.000 142 0131.860 4228.269 7
    双星姿态参数(φiii)内、外框架转角(λai,λei)脱靶量参数(xmi,ymi)
    φ1/(°)θ1/(°)ψ2/(°)λa1/(°)λe1/(°)xm1ym1
    0.520.630.58138.52106.67537.65537.65
    φ2/(°)θ2/(°)ψ2/(°)λa2/(°)λe2/(°)xm2ym2
    0.8278.530.6765.37132.58538.44538.44
    光电平台参数(ki,mi,ni,αiii)和相机安装距离(si)
    ki/mmi/mni/mαi/(°)βi/(°)γi/(°)si/m
    1112020201
    相机系统参数(dxi,dyi,fIFOVi,Ui,Vi)
    dxi/μmdyi/μmfIFOVi/μradUiVi
    7.47.42001 0641 064
    下载: 导出CSV

    表  3  定位误差分布

    Table  3.   Location error distribution

    名称均值μ/km均方差δ/km
    x轴定位误差Δx1.02×10-30.279
    y轴定位误差Δy3.28×10-40.208
    z轴定位误差Δz-3.62×10-40.595
    下载: 导出CSV

    表  4  信号统计量

    Table  4.   Signal statistics

    分量均值μ/km均方差δ/km
    s1.016×10-30.279 5
    d1-5.794×10-30.277 4
    d2-1.542×10-30.281 8
    d3-6.791×10-30.270 2
    下载: 导出CSV

    表  5  重构信号统计

    Table  5.   Reconstruction signal statistics

    分量均值μ/km均方差δ/km
    ds1.619×10-50.192
    d1-5.085×10-60.196 2
    d21.637×10-50.140 9
    d33.575×10-60.095 43
    下载: 导出CSV

    表  6  误差前后分布对比

    Table  6.   Comparison of the original error and the reconstruction error

    名称均值μ/km均方差δ/km
    y轴原始定位误差Δys3.276×10-40.208
    y轴重构定位误差Δyds-1.192×10-50.145
    y轴变化量3.395×10-40.063
    z轴原始定位误差Δzs-3.615×10-40.595
    z轴重构定位误差Δzds5.491×10-50.410 1
    z轴变化量-4.164×10-40.184 9
    下载: 导出CSV
  • [1] 杨琴,宋锐,马燕新,等.天基空间目标成像仿真系统设计与实现[J].激光与光电子学进展,2015,11:115-123.

    YANG Q,SONG R,MA Y X,et al.. Design and implement of space-based target imaging simulation system[J]. Laser & Optoelectronics Progress,2015,11:115-123.(in Chinese)
    [2] BLACKMAN S,POPOLI R. Design and Analysis of Modern Tracking Systems[M]. Norwood,M A:Artech House,1999:700-735.
    [3] Space Based Space Surveillance(SBSS)[EB/OL].[2010-09-26].http://www.globalsecurity.org/space/systems/sbss.htm.
    [4] TANG Y,ZHONG W N,LI SH. An improved double r-iteration IOD method for GEO UCTs based on SBSS system[J]. Chinese J. Space Science,2014,34(6):867-871.
    [5] STAIR A T,MILL J D. The Midcourse Space Experiment(MSX)[C]. Proceedings of the 1997 IEEE Aerospace Conference,Snowmass,CO:IEEE,1997:233-245.
    [6] VANDENBERG AFB C. STSS Demo Satellites Track Two-Stage Interceptor in Missile Defense Test[EB/OL].[2010-07-08].http://www.asdnews.com/news.
    [7] 张萍,易东云,吴翊,等.空间预警系统的视线测量误差特性研究[J].中国空间科学技术,2004,6:51-56.

    ZHANG P,YI D Y,WU Y,et al.. The LOS measurement error modeling of space early warning system[J]. Chinese Space Science and Technology,2004,6:51-56.(in Chinese)
    [8] 谢恺,韩裕生,薛模根,等.低轨红外预警星座无源定位精度分析[J].信号处理,2008,3:343-348.

    XIE K,HAN Y SH,XUE M G,et al.. Analysis of passive location accuracy in LEO infrared early warning constellation[J]. Signal Processing,2008,3:343-348.(in Chinese)
    [9] 盛卫东,徐洋,周一宇,等.天基光学传感器的视线测量误差分析[J].宇航学报,2011,1:129-135.

    SHENG W D,XU Y,ZHOU Y Y,et al.. Analysis of LOS measurement error for space-based optical sensor[J]. J. Astronautics,2011,1:129-135.(in Chinese)
    [10] 盛卫东,龙云利,周一宇.天基光学传感器网络目标定位精度分析[J].光学学报,2011,31(2):0228001.

    SHENG W D,LONG Y L,ZHOU Y Y. Analysis of target location accuracy in space-based optical-sensor network[J]. Acta Optica Sinica,2011,31(2):0228001.(in Chinese)
    [11] 王秀红,李俊峰,王彦荣.天基照相监测空间目标定轨方法及精度分析[J].光学 精密工程,2013,21(6):1394-1403.

    WANG X H,LI J F,WANG Y R. Orbit determination and precision analysis of space object with space-based camera[J]. Opt. Precision Eng.,2013,21(6):1394-1403.(in Chinese)
    [12] 王卫兵,王锐,姜振华,等.天基监视中的双星相对运动模型研究[J].红外与激光工程,2015,44(12):3782-3787.

    WANG W B,WANG R,JIANG ZH H,et al.. Research on relative movement model of two satellites in space-based surveillance[J]. Infrared and Laser Engineering,2015,44(12):3782-3787.(in Chinese)
    [13] ESA Engineering Standardization Board. Pointing Error Engineering Handbook ESSB-HB-E-003[S]. ESA-ESTEC Requirements & Standards Division,2011.
    [14] OTT T,BENOIT A,VAN DEN BRAEMBUSSCHE P,et al.. ESA pointing error engineering handbook[C]. 8th International ESA Conference on Guidance,Navigation and Control Systems,Karlovy Vary,Czech,2011.
    [15] EISENBIES S K,HOCKEN R J. Error budget by constraints[D]. Charlotte:University of North Carolina at Charlotte,2001.
    [16] 李罗钢.临近空间飞行器定位跟踪及拦截弹制导问题研究[D]. 哈尔滨:哈尔滨工业大学,2013.

    LI L G. Research on the location and of near space aircraft and the guidance of intercepter[D]. Harbin:Harbin Institute of Technology,2013.(in Chinese)
    [17] 周晓尧,范大鹏,张智永.升降式光电探测平台定位原理与误差分析[J].宇航学报,2011,32(6):1416-1422.

    ZHOU X Y,FAN D P,ZHANG ZH Y. Positioning principle and error analysis for lift electro optical detection platform[J]. J. Astronautics,2011,32(6):1416-1422.(in Chinese)
    [18] 王卫兵,王挺峰,郭劲.基于双星双目跟踪方式的空间目标定轨技术研究[J].光学学报,2015,35(1):0112006.

    WANG W B,WANG T F,GUO J. Research on orbit determination technology for space target based on method of tracking with double satellites and double cameras[J]. Acta Optica Sinica,2015,35(1):0112006.
    [19] 刘卫,王荣兰,刘四清,等.基于小波变换的卫星阻力系数分析[J].宇航学报,2015,36(2):142-150.

    LIU W,WANG R L,LIU S Q,et al.. Analysis of satellite drag coefficient based on wavelet transformation[J]. J. Astronautics,2015,36(2):142-150.(in Chinese)
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  2021
  • HTML全文浏览量:  613
  • PDF下载量:  943
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-06
  • 修回日期:  2016-04-26
  • 刊出日期:  2016-08-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!