留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

散射光信号与石墨-二氧化硅激光辐照烧蚀阈值的关系

李文智 韦成华 高丽红 马壮 王富耻 吴涛涛

李文智, 韦成华, 高丽红, 马壮, 王富耻, 吴涛涛. 散射光信号与石墨-二氧化硅激光辐照烧蚀阈值的关系[J]. 中国光学(中英文), 2016, 9(6): 642-648. doi: 10.3788/CO.20160906.0642
引用本文: 李文智, 韦成华, 高丽红, 马壮, 王富耻, 吴涛涛. 散射光信号与石墨-二氧化硅激光辐照烧蚀阈值的关系[J]. 中国光学(中英文), 2016, 9(6): 642-648. doi: 10.3788/CO.20160906.0642
LI Wen-zhi, WEI Cheng-hua, GAO Li-hong, MA Zhuang, WANG Fu-chi, WU Tao-tao. Relationship between laser ablation threshold of graphite-SiO2 and scattering light signal[J]. Chinese Optics, 2016, 9(6): 642-648. doi: 10.3788/CO.20160906.0642
Citation: LI Wen-zhi, WEI Cheng-hua, GAO Li-hong, MA Zhuang, WANG Fu-chi, WU Tao-tao. Relationship between laser ablation threshold of graphite-SiO2 and scattering light signal[J]. Chinese Optics, 2016, 9(6): 642-648. doi: 10.3788/CO.20160906.0642

散射光信号与石墨-二氧化硅激光辐照烧蚀阈值的关系

doi: 10.3788/CO.20160906.0642
基金项目: 

国家自然科学基金资助项目 No.51302013

详细信息
    作者简介:

    李文智(1991-),男,河北石家庄人,博士研究生,2014年于北京理工大学获得学士学位,主要从事烧蚀涂层材料方面的研究。E-mail:liwenzhi0418@163.com

    通讯作者:

    高丽红(1984—),女,吉林白山人,博士,副教授,硕士生导师,2007年、2009年于北京理工大学分别获得学士、硕士学位, 2012年于法国马赛中央理工大学获得博士学位,主要从事表面工程方面的研究。E-mail:gaolihong@bit.edu.cn

  • 中图分类号: TN215;TB332

Relationship between laser ablation threshold of graphite-SiO2 and scattering light signal

Funds: 

Supported by National Natural Science Foundation of China No.51302013

More Information
  • 摘要: 石墨-二氧化硅作为无机添加材料,广泛应用于各类航空航天器烧蚀涂层领域,其在高温下具有较高的反应吸热焓,在高能激光烧蚀领域具有良好的应用前景。目前,关于石墨-二氧化硅的高能激光烧蚀研究较少,尤其在高能激光烧蚀中的反应时间和烧蚀阈值难以确定。针对此问题,利用近红外探测器对激光辐照样品表面的散射光进行实时探测,并对其散射光曲线进行微分拟合处理。基于此散射光信号,结合样品烧蚀后的形态结构分析,研究了石墨-二氧化硅在不同激光功率密度下的反应时间阈值。研究结果表明:在激光输出功率密度为500 W/cm2持续辐照10 s时,散射光拟合曲线持续升高无突变,表明未发生明显的烧蚀;当激光功率密度升高至1 000~1 500 W/cm2时,散射光微分拟合曲线出现明显转折点,对应的反应时间阈值分别为1.5 s和0.8 s。

     

  • 图 1  激光辐照及散射光测试简图

    Figure 1.  Diagrammatic sketch of laser irradiation and scattering light detection

    图 2  石墨-二氧化硅样品宏观烧蚀形貌

    Figure 2.  Surface macro-morphologies of GS composites after laser irradiation

    图 3  激光烧蚀后样品质量烧蚀率

    Figure 3.  Mass ablation rate of samples after laser ablation

    图 4  经500 W/cm2激光烧蚀样品表面XRD图谱

    Figure 4.  XRD pattern of irradiation area under 500 W/cm2 laser power

    图 5  经1 000~1 500 W/cm2激光烧蚀样品表面XRD图谱

    Figure 5.  XRD pattern of irradiation area under 1 000~1 500 W/cm2 laser power

    图 6  不同条件下激光烧蚀样品散射光微分拟合曲线

    Figure 6.  Differential fitting curves under different laser ablation conditions

  • [1] 王立军,宁永强,秦莉,等.大功率半导体激光器研究进展[J].发光学报,2015,36(1):1-19. http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201501002.htm

    WANG L J,NING Y Q,QIN L,et al.. Development of high power diode laser[J]. Chinese J. Luminescence,2015,36(1):1-19.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-FGXB201501002.htm
    [2] 潘其坤.中红外固体激光器研究进展[J].中国光学,2015(4):557-566. http://www.chineseoptics.net.cn/CN/abstract/abstract9321.shtml

    PAN Q K. Progress of mid-infrared solid-state laser[J]. Chinese Optics,2015(4):557-566.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9321.shtml
    [3] 穆景阳.Cf/E复合材料的重频激光烧蚀机理及加固涂层研究[D].国防科学技术大学,2007.

    MU J Y. Studies on the ablative mechanism of Cf/E irradiated by re-frequence laser and anti-laser coatings[D]. National University of Defense Technology,2007.(in Chinese)
    [4] 钟华.发动机和抗激光加固用陶瓷材料的应用与发展[J].宇航材料工艺,1991(4):69-71. http://www.cnki.com.cn/Article/CJFDTOTAL-YHCG199104017.htm

    ZHONG H. Application and development of reinforced ceramic materials for engine and anti-laser[J]. Aerospace Materials & Technology,1991(4):69-71.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-YHCG199104017.htm
    [5] 费逸伟,于贤福,唐卫红,等.SiC精细陶瓷抗激光加固材料的研究[J].兵器材料科学与工程,2001,24(1):39-43. http://www.cnki.com.cn/Article/CJFDTOTAL-BCKG200101012.htm

    FEI Y W,YU X F,TANG W H,et al.. Study of fine SiC ceramic anti-laser reinforced materials[J]. Ordnance Material Science and Engineering,2001,24(1):39-43.(in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-BCKG200101012.htm
    [6] YAN Z Y,MA Z,LIU L,et al.. The ablation behavior of ZrB2/Cu composite irradiated by high-intensity continuous laser[J]. J. European Ceramic Society,2014,34(10):2203-2209. doi: 10.1016/j.jeurceramsoc.2014.02.006
    [7] LI X,ZOU L,WU G,et al.. Laser-induced damage on ordered and amorphous sol-gel silica coatings[J]. Optical Materials Express,2014,4(12):2478-2483. doi: 10.1364/OME.4.002478
    [8] SUN W,QI H J,FANG Z,et al.. Ultraviolet laser induced damage characteristic of SiO2 single layers[J]. Applied Mechanics & Materials,2014,513-517(74):74-77. http://cn.bing.com/academic/profile?id=2081232649&encoded=0&v=paper_preview&mkt=zh-cn
    [9] LIU W W,WEI Z Y,YI K,et al.. Postprocessing treatments to improve the laser damage resistance of fused silica optical surfaces and SiO2 coatings[J]. Chinese Optics Letters,2015,13(4):62-66. http://cn.bing.com/academic/profile?id=1834792972&encoded=0&v=paper_preview&mkt=zh-cn
    [10] HERMANN S,HARDER N P,BRENDEL R,et al.. Picosecond laser ablation of SiO2 layers on silicon substrates[J]. Applied Physics A,2009,99(1):151-158. http://cn.bing.com/academic/profile?id=2040477327&encoded=0&v=paper_preview&mkt=zh-cn
    [11] ROMIE E F. Carbon-silica reaction in silica-phenolic composites[J]. AIAA Journal,1967,5(8):1511-1513. doi: 10.2514/3.4238
    [12] NAGAMORI M,MALINSKY I,CLAVEAU A. Thermodynamics of the Si-CO system for the production of silicon carbide and metallic silicon[J]. Metallurgical Transactions B,1986,17(3):503-514. doi: 10.1007/BF02670216
    [13] ASSEKO A C A,COSSON B,DELEGLISE M,et al.. Analytical and numerical modeling of light scattering in composite transmission laser welding process[J]. International Journal of Material Forming,2015,8(1):127-135. doi: 10.1007/s12289-013-1154-7
    [14] YUAN S,PEI Z,LAI H,et al.. Au nanoparticle light scattering enhanced responsivity in pentacene phototransistor for deep-UV light detection[J]. IEEE Electron Device Letters,2015,36(11):1186-1188. doi: 10.1109/LED.2015.2479239
    [15] DURING A,COMMANDRE M,FOSSATI C,et al.. Integrated photothermal microscope and laser damage test facility for in-situ investigation of nanodefect induced damage[J]. Optics Express,2003,11(20):2497-2501. doi: 10.1364/OE.11.002497
    [16] WOODS B W,RUNKEL M J,YAN M,et al.. Investigation of damage in KDP using scattering techniques[C]. Proceedings of the 28th Annual Symposium on Optical Materials for High Power Lasers,Colorado,USA. 1997,UCRL-JC-125368.
    [17] LAMAIGNERE L,BOUILLET S,COURCHINOUX R,et al.. An accurate, repeatable, and well characterized measurement of laser damage density of optical materials[J]. Review of Scientific Instruments,2007,78(10):103-105. http://cn.bing.com/academic/profile?id=2084501276&encoded=0&v=paper_preview&mkt=zh-cn
    [18] BLOEMBERGEN N. Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics[J]. Applied Optics,1973,12:661-664. doi: 10.1364/AO.12.000661
  • 加载中
图(6)
计量
  • 文章访问数:  1501
  • HTML全文浏览量:  417
  • PDF下载量:  741
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-30
  • 修回日期:  2016-08-09
  • 刊出日期:  2016-12-01

目录

    /

    返回文章
    返回