留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高灵敏度太赫兹超导探测技术发展

李婧 张文 缪巍 史生才

李婧, 张文, 缪巍, 史生才. 超高灵敏度太赫兹超导探测技术发展[J]. 中国光学(中英文), 2017, 10(1): 122-130. doi: 10.3788/CO.20171001.0122
引用本文: 李婧, 张文, 缪巍, 史生才. 超高灵敏度太赫兹超导探测技术发展[J]. 中国光学(中英文), 2017, 10(1): 122-130. doi: 10.3788/CO.20171001.0122
LI Jing, ZHANG Wen, MIAO Wei, SHI Sheng-cai. Development of ultra high sensitivity superconducting THz detectors[J]. Chinese Optics, 2017, 10(1): 122-130. doi: 10.3788/CO.20171001.0122
Citation: LI Jing, ZHANG Wen, MIAO Wei, SHI Sheng-cai. Development of ultra high sensitivity superconducting THz detectors[J]. Chinese Optics, 2017, 10(1): 122-130. doi: 10.3788/CO.20171001.0122

超高灵敏度太赫兹超导探测技术发展

基金项目: 

国家自然科学基金重大仪器研制专项资助项目 11127903

国家自然科学基金重大基金资助项目 11190012

国家自然科学基金优秀青年基金资助项目 11422326

详细信息
    通讯作者:

    李婧(1978-), 女, 山东青岛人, 博士, 项目研究员, 2009年于中科院紫金山天文台获得博士学位, 主要从事射电天文、超导电子学方面的研究。E-mail:lijing@pmo.ac.cn

  • 中图分类号: P161

Development of ultra high sensitivity superconducting THz detectors

Funds: 

Supported by Major Program of National Natural Science Foundation of China 11127903

Supported by Major Program of National Natural Science Foundation of China 11190012

National Natural Science Funds for Excellent Young Scholar 11422326

More Information
  • 摘要: 太赫兹波段占有宇宙微波背景(CMB)辐射以后宇宙空间近一半的光子能量,该波段在天文学研究中具有不可替代的作用,因此太赫兹天文学的研究,具有极其重要的科学意义。本文系统介绍了基于超高灵敏度太赫兹超导探测技术的太赫兹相干探测器发展状况,包括超导隧道结混频器(SIS)和超导热电子混频器(HEB),以及以超导动态电感探测器(MKIDs)和超导相变边缘探测器(TES)为代表的非相干探测器的研究。在此基础上,展望了该领域未来发展趋势,对我国太赫兹天文探测技术的发展具有一定的参考意义。

     

  • 图 1  (a)0.5 THz氮化铌超导SIS接收机系统和(b)第一条基于其观测的天文谱线

    Figure 1.  (a)0.5 THz NbN SIS receiver and (b) the 1st astronomical observation ever done with NbN SIS mixers

    图 2  HEB器件结构平面示意图

    Figure 2.  Structure diagram of the HEB device

    图 3  (a)2.7 THz量子级联激光器结构示意图,(b)模拟仿真整形前2.7 THz量子级联激光器远场辐射方向图,(c)模拟仿真整形后2.7 THz量子级联激光器远场辐射方向图和(d)实验测得整形后2.7 THz量子级联激光器远场辐射方向图

    Figure 3.  (a) Structure diagram of the 2.7 THz QCL, (b) far field radiation pattern of the 2.7 THz QCL before the simulation shaping, (c) far field radiation pattern of the 2.7 THz QCL after the simulation shaping and (d) far field radiation pattern of the 2.7 THz QCL after the testing

    图 4  TES探测器阵列结构图

    Figure 4.  Structure of the TES array

    图 5  (a) MKIDs探测器的单像元结构图和(b)工作原理示意曲线图

    Figure 5.  (a) Structure of the one pixel MKIDs detector and (b) the diagram of the working principle

  • [1] IVISON R J, SMAIL I, BARGERA J, et al.. The diversity of SCUBA-selected galaxies[J]. Mon. Not. R. Astron. Soc., 2000, 315:209-222. doi: 10.1046/j.1365-8711.2000.03376.x
    [2] PHILLIPSTG, KEENE J. Submillimeter astronomy[J]. IEEE, 1992, 80:1662-1678. doi: 10.1109/5.175248
    [3] ZMUIDZINAS J, RICHARDS P L. Superconducting detectors and mixers for millimeter and submillimeter astrophysics[J]. IEEE, 2004, 92:1598-1616. https://www.researchgate.net/publication/2986371_Superconducting_Detectors_and_Mixers_for_Millimeter_and_Submillimeter_Astrophysics
    [4] Kraus J D. Radio Astronomy, 2nd ed.[D]. Powell, OH:Cygnus-Quasar Books, 1986.
    [5] TUCKER J R, FELDMAN M J. Quantum detection at millimeter wavelengths[J]. Rev. Mod. Phys., 1985, 57:1055-1113. doi: 10.1103/RevModPhys.57.1055
    [6] JACKSON B D, DE LANGE G, ZIJLSTRA T, et al.. Low-noise 0.8-0.96-and 0.96-1.12-THz superconductor-insulator-superconductor mixers for the Herschel Space Observatory[J]. IEEE Trans. Microwave Theory Tech., 2006, 54:547-557. doi: 10.1109/TMTT.2005.862717
    [7] KARPOV A, MILLER D, RICE F, et al.. Low noise 1THz 1.4THz mixers using Nb/Al-AlN/NbTiN SIS junctions[J]. IEEE Trans. Appl. Supercond., 2007, 17:343-346. doi: 10.1109/TASC.2007.898277
    [8] TONG C Y E, BLUNDELL R. Theory of series-connected distributed SIS mixers with ultra-wide instantaneous bandwidth[C]. Proceedings of 17th Int. Space Terahertz Technol. Symp., Harvard, USA, 2006:35-38.
    [9] LI J, TAKEDA M, WANG ZH, et al. Low-noise 0.5 THz all-NbN superconductor-insulator-superconductor mixer for submillimeter wave astronomy[J]. Appl. Phys. Letts., 2008, 92:222504. doi: 10.1063/1.2940235
    [10] LI J, TAKEDA M, WANG Z H, et al.. Characterization of the mixing performance of all-NbN superconducting tunnel junctions at 0.5 THz[J]. IEEE Trans. Appl. Supercond., 2009, 19(3):417-422. doi: 10.1109/TASC.2009.2018504
    [11] GERSHENZON E M, GOL'TSMAN G N, GOGIDZEI G, et al.. Millimeter and submillimeter range mixer based on electronic heating of superconducting films in the resistive state[J]. Sov. Phys. Superconductivity, 1990, 3:1582-1597. https://www.researchgate.net/publication/229432132_Millimeter_and_submillimeter_range_mixer_based_on_electron_heating_of_superconducting_films_in_the_resistive_state
    [12] PROBER D E. Superconducting terahertz mixer using a transition-edge microbolometer[J]. Appl. Phys. Lett., 1993, 62(17):2119-2121. doi: 10.1063/1.109445
    [13] REN Y, HOVENIER J N, HIGGINS R, et al.. High-resolution heterodyne spectroscopy using a tunable quantum cascade laser around 3.5 THz[J]. Applied Physics Letters, 2011, 98:231109. doi: 10.1063/1.3599518
    [14] REN Y, HOVENIER J N, HIGGINS R, et al.. Terahertz heterodyne spectrometer using a quantum cascade laser[J]. Appl. Phys. Lett., 2010, 97:161105. doi: 10.1063/1.3502479
    [15] REN Y, GAO J R, et al.. Heterodyne gas cell measurements at 2.9 THz using a quantum cascade laser as local oscillator[J]. SPIE, 2010, 7741:774118-7. http://resolver.tudelft.nl/uuid:6796de1a-46ce-4119-b868-504be5536c0c
    [16] MARNIEROS S, BERGE L, JUILLARD A, et al.. Low temperature specific heat of NbSi Anderson insulator measured by cryogenic bolometry[J]. Physica B, 1999, 259-261:862-863. doi: 10.1016/S0921-4526(98)00703-0
    [17] PAJOTJ F, PRELE D, ZHONG J Q, et al. NbSi TES array and readout:development and characterization[J]. EEE Trans. Appl. Supercond., 2011, 21(3):192-19. doi: 10.1109/TASC.2010.2091230
    [18] MARTINO J, PRELE D, PIAT M, et al.. Characterization of NbSi TES bolometers:preliminary results[J]. J. Low Temp. Phys., 2012, 167(3/4):176-181. https://www.researchgate.net/publication/257590638_Characterization_of_NbSi_TES_Bolometers_Preliminary_Results?_sg=kpnCGZZ6x9iJ0YYFSAtp5DKOmjTvdiGRWkx3fPXRME961ojkVT3vXIh4wcm7Og2nj58XP0WBcWqPYxsGrwAD0Q
    [19] ZHANG W, ZHONG JQ, MIAOW, et al.. Electrical characteristics of superconducting Ti Transition edge sensor[J]. J. Low Temp. Phys., 2015, 181(5/6):1-6. https://www.researchgate.net/profile/Masataka_Ohkubo/publication/245119082_Characteristics_of_Ti_films_for_transition-edge_sensor_microcalorimeters/links/55a596ec08aef604aa0456af.pdf
    [20] ZHANG W, ZHONG J Q, MIAO W, et al.. Characterization of a superconducting NbSi Transition edge sensor for TESIA[J]. IEEE Transactions on Applied Superconductivity, 2015, 25(3):2100204.
    [21] MAZIN B A. Microwave kinetic inductance detectors[D]. California:California Institute of Technology, 2004.
    [22] HOLLAND W. Millimeter, submillimeter, and far-infrared detectors and instrumentation for astronomy[J]. SPIE, 2010, 7854:78540U.
    [23] BASELMANS J. Kinetic inductance detectors[J]. J. Low Temp. Phys., 2012, 167(3):292-304.
    [24] SHI SH C, ZHANG W, LI J, et al.. A THz superconducting imaging array developed for the DATE5 Telescope[J]. J. Low Temp. Phys., 2016, 184(3):1-5. https://www.researchgate.net/publication/284095420_A_THz_Superconducting_Imaging_Array_Developed_for_the_DATE5_Telescope
    [25] LI J, YANG J P, LIN ZH H, et al.. Development of an 8×8 CPW microwave kinetic inductance detector (MKID) Array at 0.35 THz[J]. J. Low Temp. Phys., 2016, 184(1):103-107. https://www.researchgate.net/publication/285257176_Development_of_an_88_CPW_microwave_kinetic_inductance_detectors_MKIDs_Array_at_035_THz
  • 加载中
图(5)
计量
  • 文章访问数:  2160
  • HTML全文浏览量:  594
  • PDF下载量:  915
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-30
  • 修回日期:  2016-10-24
  • 刊出日期:  2017-02-25

目录

    /

    返回文章
    返回