留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Optically controlled narrowband terahertz switcher based on graphene

GREBENCHUKOV Alexander N ZAITSEV Anton D KHODZITSKY Mikhail K

GREBENCHUKOVAlexander N, ZAITSEVAnton D, KHODZITSKYMikhail K. 基于石墨烯的光学控制窄带太赫兹开关[J]. 中国光学(中英文), 2018, 11(2): 166-173. doi: 10.3788/CO.20181102.0166
引用本文: GREBENCHUKOVAlexander N, ZAITSEVAnton D, KHODZITSKYMikhail K. 基于石墨烯的光学控制窄带太赫兹开关[J]. 中国光学(中英文), 2018, 11(2): 166-173. doi: 10.3788/CO.20181102.0166
GREBENCHUKOV Alexander N, ZAITSEV Anton D, KHODZITSKY Mikhail K. Optically controlled narrowband terahertz switcher based on graphene[J]. Chinese Optics, 2018, 11(2): 166-173. doi: 10.3788/CO.20181102.0166
Citation: GREBENCHUKOV Alexander N, ZAITSEV Anton D, KHODZITSKY Mikhail K. Optically controlled narrowband terahertz switcher based on graphene[J]. Chinese Optics, 2018, 11(2): 166-173. doi: 10.3788/CO.20181102.0166

基于石墨烯的光学控制窄带太赫兹开关

详细信息
  • 中图分类号: O441.4

Optically controlled narrowband terahertz switcher based on graphene

doi: 10.3788/CO.20181102.0166
Funds: 

Government of Russian Federation grant 074-U01

More Information
    Author Bio:

    GREBENCHUKOV Alexander(1990—), PhD student, Department of Photonics and Optical Information Technology, ITMO University, Russia. His research interests focus on graphene-based tunable terahertz metamaterials and designing structures for superresolution. E-mail:grebenchukov_a@mail.ru

    ZAITSEV Anton(1995—), Undergraduate student, Department of Photonics and Optical Information Technology, ITMO University, Russia. His research interests focus on graphene-based tunable terahertz metamaterials. E-mail:anleza@ya.ru

    KHODZITSKY Mikhail(1984—), Chief of Terahertz Biomedicine Laboratory, Associate professor, Department of Photonics and Optical Information Technology, ITMO University, Russia. His research interests focus on terahertz photonics, metamaterials, biophotonics and terahertz spectroscopy. E-mail:khodzitskiy@yandex.ru

    Corresponding author: KHODZITSKY Mikhail K, E-mail:khodzitskiy@yandex.ru
  • 摘要: 本文提出了一种光控太赫兹开关,该开关采用覆盖单层石墨烯的十字金属谐振器超表面。利用石墨烯表面电导率模型和有限元法计算了这种复合结构的光谱特性。模拟结果表明,在0.2 W/mm2的光泵浦后,传输谱(调制深度为36.8%,Q-因子为250)出现了窄带共振衰减现象。另外,这种衰减的调制深度可以通过改变泵浦强度微调节。因此,光学可调谐太赫兹开关的设计将有助于太赫兹通信应用的功能组件开发。

     

  • Figure 1.  Spectrum of real(a) and imaginary(b) parts of normalized conductivity for single layer graphene at various pumping intensities. Real(c) and imaginary(d) parts of normalized conductivity as function of pumping intensity at various frequencies

    Figure 2.  Schematic of the unit cell geometry under consideration: the periodic cross-shaped aluminum/graphene arrays with width K, length L and period G. The arrays are located on a PET substrate with thickness d. The incident EM wave is TE polarized with the electric fields along the y axis. The plane wave normally(along z) impinges on the switcher

    Figure 3.  Transmission, reflection and absorption spectra of graphene based metamaterial switcher without optical pumping. The polarization of the incident light is along the y direction

    Figure 4.  Transmission, reflection and absorption spectra of graphene based metamaterial switcher under optical pumping with intensity of Ipump=0.2 W/mm2. The polarization of the incident light is along the y direction

    Figure 5.  Transmission at 0.271 THz for different optical pumping intensity after turning on the switcher

    Figure 6.  Electric field distributions from the metal surface of structure at the reflection and absorption peak(0.271 THz) without(a) and with(b) optical pumping(0.2 W/mm2)

    Figure 7.  Distributions of electric field polarization from the metal surface at the reflection and absorption peak(0.271 THz) without(a) and with(b) optical pumping(0.2 W/mm2). The polarization of the incident light is along the y direction

  • [1] SONG H J, NAGATSUMA T. Present and future of terahertz communications[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1:256-263. doi: 10.1109/TTHZ.2011.2159552
    [2] JIANG Z, ZHANG Y, TAN Y W, et al.. Graphene in extremely high magnetic fields[J]. International Journal of Modern Physics B, 2007, 21:1123-1130. doi: 10.1142/S0217979207042549
    [3] BOLOTIN K I, SIKES K J, JIANG Z, et al.. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146:351-355. doi: 10.1016/j.ssc.2008.02.024
    [4] BONACCORSO F, SUN Z, HAZAN T, et al.. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4:611-622. doi: 10.1038/nphoton.2010.186
    [5] GRIGORENKO A N, POLINI M, NOVOSELOV K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6:749-758. doi: 10.1038/nphoton.2012.262
    [6] KIM K S, ZHAO Y, JANG H, et al.. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457:706-710. doi: 10.1038/nature07719
    [7] RANA F. Graphene terahertz plasmon oscillators[J]. IEEE Transactions on Nanotechnology, 2008, 7:91-99. doi: 10.1109/TNANO.2007.910334
    [8] HE X J, LI T Y, WANG L, et al.. Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene[J]. Journal of Applied Physics, 2014, 115:17B903. doi: 10.1063/1.4866079
    [9] YANG K, LIU S, AREZOOMANDAN S, et al.. Graphene-based tunable metamaterial terahertz filters[J]. Applied Physics Letters, 2014, 105:093105. doi: 10.1063/1.4894807
    [10] GAO W, SHU J, REICHEL K, et al.. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures[J]. Nano Letters, 2014, 14:1242-1248. doi: 10.1021/nl4041274
    [11] LIN Y S, QIAN Y, MA F, et al.. Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators[J]. Applied Physics Letters, 2013, 102:111908. doi: 10.1063/1.4798244
    [12] LEE S H, CHOI M, KIM T T, et al.. Switching terahertz waves with gate-controlled active graphene metamaterials[J]. Nature Materials, 2012, 11:936-941. doi: 10.1038/nmat3433
    [13] KAKENOV N, BALCI O, POLAT E O, et al.. Broadband terahertz modulators using self-gated graphene capacitors[J]. JOSA B, 2015, 32:1861-1866. doi: 10.1364/JOSAB.32.001861
    [14] LIANG G, HU X, YU X, et al.. Integrated terahertz graphene modulator with 100% modulation depth[J]. ACS Photonics, 2015, 2:1559-1566. doi: 10.1021/acsphotonics.5b00317
    [15] LAO J, TAO J, WANG Q J, et al.. Tunable graphene-based plasmonic waveguides:nanomodulators and nano attenuators[J]. Laser Photonics Rev., 2014, 8:569-574. doi: 10.1002/lpor.v8.4
    [16] WEIS P, GARCIA-POMAR J L, HOH M, et al.. Spectrally wide-band terahertz wave modulator based on optically tuned graphene[J]. ACS Nano, 2012, 6:9118-9124. doi: 10.1021/nn303392s
    [17] WEIS P, GARCIA-POMAR J L, RAHM M. Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene[J]. Optics Express, 2014, 22:8473-8489. doi: 10.1364/OE.22.008473
    [18] LI Q, TIAN Z, ZHANG X, et al.. Dual control of active graphene silicon hybrid metamaterial devices[J]. Carbon, 2015, 90:146-153. doi: 10.1016/j.carbon.2015.04.015
    [19] CHEN X Y, TIAN Z. Recent progress in terahertz dynamic modulation based on graphene[J]. Chinese Optics, 2017, 10:86-97.(in Chinese) doi: 10.3788/co.
    [20] LUO S, WANG Y, TONG X, et al.. Graphene-based optical modulators[J]. Nanoscale Research Letters, 2015, 10:199. doi: 10.1186/s11671-015-0866-7
    [21] REN L, ZHANG Q, YAO J, et al.. Terahertz and infrared spectroscopy of gated large-area graphene[J]. Nano Letters, 2012, 12:3711-3715. doi: 10.1021/nl301496r
    [22] HANSON G W. Dyadic Greens functions and guided surface waves on graphene[J]. Journal of Applied Physics, 2006, 103:064302. https://arxiv.org/pdf/cond-mat/0701205v2.pdf
    [23] WINNERL S, ORLITA M, PLOCHOCKA P, et al.. Carrier relaxation in epitaxial graphene photoexcited near the Dirac point[J]. Physical Review Letters, 2011, 107:237401. doi: 10.1103/PhysRevLett.107.237401
    [24] FALKOVSKY L A. Optical properties of graphene[J]. Journal of Physics:Conference Series, 2008, 129:012004. doi: 10.1088/1742-6596/129/1/012004
    [25] DAWLATY J M, SHIVARAMAN S, CHANDRASHEKHAR M, et al.. Measurement of ultrafast carrier dynamics in epitaxial graphene[J]. Applied Physics Letters, 2008, 92:042116. doi: 10.1063/1.2837539
    [26] RYZHⅡ V, RYZHⅡ M, OTSUJI T. Negative dynamic conductivity of graphene with optical pumping[J]. Journal of Applied Physics, 2007, 101:083114. doi: 10.1063/1.2717566
    [27] MAK K F, SFEIR M Y, WU Y, et al.. Measurement of the optical conductivity of graphene[J]. Physical Review Letters, 2008, 101:196405. doi: 10.1103/PhysRevLett.101.196405
    [28] RANA F, GEORGE P A, STRAIT J H, et al.. Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene[J]. Physical Review B, 2009, 79:115447. doi: 10.1103/PhysRevB.79.115447
    [29] LEWIS R A. A review of terahertz sources[J]. Appl. Phys. D, 2014, 47:374001. doi: 10.1088/0022-3727/47/37/374001
    [30] FERRARO A, ZOGRAFOPOULOS D C, CAPUTO R, et al.. Broadand narrow-line terahertz filtering in frequency-selective surfaces patterned on thin low-loss polymer substrates[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23:1-8. https://www.researchgate.net/profile/Antonio_Ferraro
    [31] KE S, WANG B, HUANG H, et al.. Plasmonic absorption enhancement in periodic cross-shaped graphene arrays[J]. Optics Express, 2015, 23:8888-8900. doi: 10.1364/OE.23.008888
    [32] FERRARO A, ZOGRAFOPOULOS D C, CAPUTO R, et al.. Angle resolved and polarization-dependent investigation of cross-shaped frequency selective surface terahertz filters[J]. Applied Physics Letters, 2017, 11:0141107. doi: 10.1021/acs.jpcc.6b11321
    [33] ANDRYIEUSKI A, LAVRINENKO A V. Graphene metamaterials based tunable terahertz absorber:effective surface conductivity approach[J]. Optics Express, 2013, 7:9144-9155. https://www.researchgate.net/profile/Andrei_Andryieuski/publication/236188522_Graphene_metamaterials_based_tunable_terahertz_absorber_Effective_surface_conductivity_approach/links/53cfdb630cf25dc05cfb2ee4.pdf
    [34] HE X, ZHONG X, LIN F, et al.. Investigation of graphene assisted tunable terahertz metamaterials absorber[J]. Optical Materials Express, 2016, 6:331-342. doi: 10.1364/OME.6.000331
  • 加载中
图(7)
计量
  • 文章访问数:  1854
  • HTML全文浏览量:  512
  • PDF下载量:  322
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-14
  • 修回日期:  2018-01-27
  • 刊出日期:  2018-04-01

目录

    /

    返回文章
    返回